当前位置: X-MOL 学术Space Weather › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relativistic Electron Flux Prediction at Geosynchronous Orbit Based on the Neural Network and the Quantile Regression Method
Space Weather ( IF 4.288 ) Pub Date : 2020-07-22 , DOI: 10.1029/2020sw002445
Hui Zhang 1 , Suiyan Fu 1 , Lun Xie 1 , Duo Zhao 2 , Chao Yue 1 , Zuyin Pu 1 , Ying Xiong 1 , Tong Wu 1 , Shaojie Zhao 1 , Yixin Sun 1 , Bo Cui 1 , Zhekai Luo 1
Affiliation  

Geosynchronous satellites are exposed to the relativistic electrons, which may cause irreparable damage to the satellites. The prediction of the relativistic electron flux is therefore important for the safety of the satellites. Unlike previous works focusing on the single‐value prediction of relativistic electron flux, we predict the relativistic electron flux in a probabilistic approach by using the neural network and the quantile regression method. In this study, a feedforward neural network is first designed to predict average daily flux of relativistic electrons (>2 MeV), or the expectation of the flux from the probabilistic perspective, at geosynchronous orbit 1 day in advance. The neural network performs well, with the average root mean squared error, the average prediction efficiency, and the average linear correlation coefficient between observations and predictions reaching 0.305, 0.832, and 0.916, respectively, during the periods of 2011–2017. We then combine the quantile regression method with the feedforward neural network to predict the quantiles of relativistic electron flux by applying a special loss function to the neural network. We use the multiple‐quantiles prediction model to predict flux ranges of the relativistic electrons and the corresponding probabilities, which is an advantage over the single‐value prediction. Moreover, it appears to be for the first time that the approximate shape of the probability density function of relativistic electron flux is predicted.

中文翻译:

基于神经网络和分位数回归方法的地球同步轨道相对论电子通量预测

地球同步卫星暴露于相对论电子下,这可能会对卫星造成无法弥补的损害。因此,相对论电子通量的预测对于卫星的安全性很重要。与以前的工作着重于相对论电子通量的单值预测的工作不同,我们通过使用神经网络和分位数回归方法以概率方法来预测相对论电子通量。在这项研究中,首先设计了前馈神经网络来预测相对论电子的平均日通量(> 2 MeV),或提前1天在地球同步轨道上从概率角度对通量的期望。该神经网络的平均根均方根误差,平均预测效率,在2011-2017年期间,观测值与预测值之间的平均线性相关系数分别达到0.305、0.832和0.916。然后,通过将特殊的损失函数应用于神经网络,将分位数回归方法与前馈神经网络相结合,以预测相对论电子通量的分位数。我们使用多分位数预测模型来预测相对论电子的通量范围和相应的概率,这比单值预测更具优势。此外,似乎是第一次预测相对论电子通量的概率密度函数的近似形状。然后,通过将特殊的损失函数应用于神经网络,将分位数回归方法与前馈神经网络相结合,以预测相对论电子通量的分位数。我们使用多分位数预测模型来预测相对论电子的通量范围和相应的概率,这比单值预测更具优势。此外,似乎是第一次预测相对论电子通量的概率密度函数的近似形状。然后,通过将特殊的损失函数应用于神经网络,将分位数回归方法与前馈神经网络相结合,以预测相对论电子通量的分位数。我们使用多分位数预测模型来预测相对论电子的通量范围和相应的概率,这比单值预测更具优势。此外,似乎是第一次预测相对论电子通量的概率密度函数的近似形状。这是优于单值预测的优势。此外,似乎是第一次预测相对论电子通量的概率密度函数的近似形状。这是优于单值预测的优势。此外,似乎是第一次预测相对论电子通量的概率密度函数的近似形状。
更新日期:2020-09-16
down
wechat
bug