当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational design of resonant phononic crystal for aperiodic stress wave attenuation
Engineering Computations ( IF 1.6 ) Pub Date : 2020-07-22 , DOI: 10.1108/ec-10-2019-0492
Chengcheng Luo , Shaowu Ning , Zhanli Liu , Xiang Li , Zhuo Zhuang

Purpose

This paper aims to propose a design method for attenuating stress waves pressure using soft matrix embedded with particles.

Design/methodology/approach

Based on the phononic crystal theory, the particle composed of hard core and soft coating can form a spring oscillator structure. When the frequency of the wave is close to the resonance frequency of the spring oscillator, it can cause the resonance of the particle and absorb a lot of energy. In this paper, the resonant phononic crystal with three phases, namely, matrix, particle core and coating, is computationally designed to effectively mitigate the stress wave with aperiodic waveform.

Findings

The relationship between the center frequency and width of the bandgap and the geometric and physical parameters of particle core are discussed in detail, and the trend of influence is analyzed and explained by a spring oscillator model. Increasing the radius of hard core could effectively enhance the bandgap width, thus enhancing the effect of stress wave attenuation. In addition, it is found that when the wave is in the bandgap, adding viscosity into the matrix will not further enhance the stress attenuation effect, but will make the stress attenuation effect of the material worse because of the competition between viscous dissipation mechanism and resonance mechanism.

Research limitations/implications

This study will provide a reference for the design of stress wave protection materials with general stress waves.

Originality/value

This study proposes a design method for attenuating stress waves pressure using soft matrix embedded with particles.



中文翻译:

非周期性应力波衰减的共振声子晶体的计算设计

目的

本文旨在提出一种利用嵌入粒子的软矩阵来衰减应力波压力的设计方法。

设计/方法/方法

根据声子晶体理论,由硬核和软涂层组成的粒子可以形成弹簧振荡器结构。当波的频率接近弹簧振荡器的共振频率时,它会引起粒子共振并吸收大量能量。本文通过计算设计了具有三个相位的共振声子晶体,分别是基体,粒子核和涂层,以有效地缓解非周期性波形的应力波。

发现

详细讨论了带隙中心频率和带隙宽度与粒子核的几何和物理参数之间的关系,并通过弹簧振荡器模型分析和解释了影响趋势。增加硬核的半径可以有效地增加带隙宽度,从而增强应力波衰减的效果。另外,发现当波在带隙中时,向基体中添加粘度不会进一步增强应力衰减效果,但是由于粘性耗散机理与共振之间的竞争,将使材料的应力衰减效果变差。机制。

研究局限/意义

该研究将为设计具有一般应力波的应力波防护材料提供参考。

创意/价值

这项研究提出了一种使用嵌有颗粒的软基质来衰减应力波压力的设计方法。

更新日期:2020-07-22
down
wechat
bug