当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of bluff body for vortex induced vibration energy harvesting
Ocean Engineering ( IF 5 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.oceaneng.2020.107624
Mingrui Zheng , Dong Han , Sijie Gao , Jincheng Wang

Abstract In order to obtain a larger VIV response and harvest energy more efficiently in wider flow velocity ranges in long-distance transport pipelines, the effects of the elastic modulus of material, mass ratio and cross-sectional shapes (circular cylinder, squa-cir prism, cir-squa prism) of flow-around structure on the VIV performance are numerically investigated in this paper. URANS equations with k-ω SST turbulence model are employed to calculate the two-dimensional flow field with Reynolds number ranging from 2000 to 50000, and Newmark-β method is adopted to capture the one-degree-of-freedom motion of the system. The numerical results show that the elastic modulus of material and mass ratio are two important factors affecting the natural frequency of the system, which is closely related to the vibration response of system. The range of synchronization increases with an increase in elastic modulus, and the onset of synchronization is more gradual for systems with higher natural frequency. And the maximum amplitude ratio and the range of Reynolds number corresponding to the synchronization region all increase with the decrease of mass ratio. Moreover, the bluff body with squa-cir cross section shows highest amplitude response of 1.16D due to its forward vortex shedding position, indicating the direction for the design of the cross-sectional shapes of bluff body in the pipeline for VIV energy harvesting. Thereby, it can be concluded that the natural frequency of system and vortex shedding position caused by the cross-sectional shapes are important factors affecting the VIV response.

中文翻译:

用于涡激振动能量收集的钝体数值研究

摘要 为了在长输管道更宽的流速范围内获得更大的 VIV 响应和更有效地收集能量,材料的弹性模量、质量比和横截面形状(圆柱体、方形棱柱体)的影响本文数值研究了环流结构对 VIV 性能的影响。采用带有k-ω SST湍流模型的URANS方程计算雷诺数为2000~50000的二维流场,采用Newmark-β方法捕捉系统的一自由度运动。数值结果表明,材料弹性模量和质量比是影响系统固有频率的两个重要因素,与系统的振动响应密切相关。同步范围随着弹性模量的增加而增加,对于具有较高固有频率的系统,同步的开始更加缓慢。并且同步区域对应的最大振幅比和雷诺数范围均随着质量比的减小而增大。此外,具有方形横截面的钝体由于其前涡脱落位置显示出1.16D的最高振幅响应,这为VIV能量收集管道中钝体横截面形状的设计指明了方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。对于固有频率较高的系统,同步的开始更加缓慢。并且同步区域对应的最大振幅比和雷诺数范围均随着质量比的减小而增大。此外,具有方形横截面的钝体由于其前涡脱落位置显示出1.16D的最高振幅响应,这为VIV能量收集管道中钝体横截面形状的设计指明了方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。对于固有频率较高的系统,同步的开始更加缓慢。并且同步区域对应的最大振幅比和雷诺数范围均随着质量比的减小而增大。此外,具有方形横截面的钝体由于其前涡脱落位置显示出1.16D的最高振幅响应,这为VIV能量收集管道中钝体横截面形状的设计指明了方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。并且同步区域对应的最大振幅比和雷诺数范围均随着质量比的减小而增大。此外,具有方形横截面的钝体由于其前涡脱落位置显示出1.16D的最高振幅响应,这为VIV能量收集管道中钝体横截面形状的设计指明了方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。并且同步区域对应的最大振幅比和雷诺数范围均随着质量比的减小而增大。此外,具有方形横截面的钝体由于其前涡脱落位置显示出1.16D的最高振幅响应,这为VIV能量收集管道中钝体横截面形状的设计指明了方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。指明了 VIV 能量收集管道中钝体横截面形状的设计方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。指明了 VIV 能量收集管道中钝体横截面形状的设计方向。由此可以得出结论,由截面形状引起的系统固有频率和涡旋脱落位置是影响VIV响应的重要因素。
更新日期:2020-10-01
down
wechat
bug