当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Light-powered reactivation of flagella and contraction of microtubules network: towards building an artificial cell
bioRxiv - Biophysics Pub Date : 2021-02-24 , DOI: 10.1101/2020.07.20.212191
R. Ahmad , C. Kleineberg , V. Nasirimarekani , Y. Su , S. Goli Pozveh , A.J. Bae , E. Bodenschatz , K. Sundmacher , I. Guido , T. Vidaković-Koch , A. Gholami

Artificial systems capable of self-sustained movement with self-sufficient energy are of high interest with respect to the development of many challenging applications including medical treatments but also technical applications. The bottom-up assembly of such systems in the context of synthetic biology is still a challenging task. In this work, we demonstrate the biocompatibility and efficiency of an artificial light-driven energy module and a motility functional unit by integrating light-switchable photosynthetic vesicles with demembranated flagella that provide ATP for dynein molecular motors upon illumination. The flagellar propulsion is coupled to the beating frequency and dynamic ATP synthesis in response to illumination allows us to control beating frequency of flagella in a light-dependent manner. In addition, we verified the functionality of light-powered synthetic vesicles in in vitro motility assays by encapsulating microtubules assembled with force-generating kinesin-1 motors and the energy module to investigate the dynamics of a contractile filamentous network in cell-like compartments by optical stimulation. Integration of this photosynthetic system with various biological building blocks such as cytoskeletal filaments and molecular motors may contribute to the bottom-up synthesis of artificial cells that are able to undergo motor-driven morphological deformations and exhibit directional motion in a light-controllable fashion.

中文翻译:

光动力鞭毛的活化和微管网络的收缩:朝着建立人造细胞的方向发展

在包括医学治疗以及技术应用在内的许多具有挑战性的应用的开发方面,能够自给自足地运动并具有自给自足的能量的人造系统引起了人们的极大兴趣。在合成生物学的背景下,这种系统的自下而上组装仍然是一项艰巨的任务。在这项工作中,我们通过将光可开关的光合囊泡与去膜鞭毛整合在一起,证明了人工光驱动的能量模块和运动功能单元的生物相容性和效率,该膜囊通过在照明时为动力蛋白分子马达提供ATP。鞭毛的推进与跳动频率相关,响应于照明的动态ATP合成使我们能够以光依赖的方式控制鞭毛的跳动频率。此外,我们通过封装与产生力的驱动蛋白1电机和能量模块组装的微管,通过光刺激研究细胞状隔室中收缩性丝状网络的动力学,从而验证了光动力合成囊泡在体外运动测定中的功能。这种光合作用系统与各种生物构件(例如细胞骨架细丝和分子马达)的整合可能有助于人工细胞的自下而上的合成,这些人工细胞能够进行马达驱动的形态学变形并以光可控的方式表现出方向性运动。
更新日期:2021-02-25
down
wechat
bug