当前位置: X-MOL 学术Environ. Prog. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxidation kinetics of water contaminants: New insights from artificial intelligence
Environmental Progress & Sustainable Energy ( IF 2.8 ) Pub Date : 2020-07-21 , DOI: 10.1002/ep.13491
Farhad Keivanimehr 1 , Alireza Baghban 1 , Sajjad Habibzadeh 1, 2 , Ahmad Mohaddespour 3 , Amin Esmaeili 4 , Muhammad Tajammal Munir 3 , Mohammad Reza Saeb 5
Affiliation  

Degradation of water contaminants through the advanced oxidation processes (AOP) has become the focus of strategists of environmental science and technology. Hydroxyl radicals are regarded as promising oxidants for the efficient decomposition of the organic contaminants. Nevertheless, understanding and monitoring the kinetics of the hydroxyl radical reaction has remained cumbersome to be deciphered by the aid of mathematical and statistical analyses. Herein, a new stochastic gradient boosting (SGB) decision tree technique based on the quantitative structure–property relationship (QSPR) method was developed to model and capture an image of the degradation rate constant of the hydroxyl radicals. An artificial model was constructed, trained, and tested on the bedrock of 457 different cases of water contaminants from 27 chemical structures. Several statistical techniques, including outlier detection, regression, sensitivity, and error analyses were served to validate the reliability of the proposed model. The outcomes showed that the developed model could appropriately estimate the logarithmic hydroxyl radical rate constants of numerous water contaminants with the promising R‐squared of 0.97, and a quite low mean absolute relative error of 0.86%. Moreover, a sensitivity analysis revealed that Burden eigenvalue was found to be the most effective parameter as the input of the model. Finally, a comparison study was performed between the proposed QSPR and the models previously suggested, where the superiority of the present model was uncovered.

中文翻译:

水污染物的氧化动力学:人工智能的新见解

通过高级氧化工艺(AOP)降解水污染物已成为环境科学和技术战略家的重点。羟基被认为是有效分解有机污染物的有前途的氧化剂。然而,借助于数学和统计分析来理解和监测羟基自由基反应的动力学仍然很麻烦。在此,开发了一种基于定量结构-性质关系(QSPR)方法的随机梯度增强(SGB)决策树新技术,以建模和捕获羟基自由基降解速率常数的图像。在457种来自27个化学结构的水污染物案例的基岩上构建,训练和测试了一个人造模型。几种统计技术,包括异常值检测,回归,灵敏度和误差分析,用于验证所提出模型的可靠性。结果表明,开发的模型可以适当地估计许多水污染物的对数羟基自由基速率常数,其有希望的R平方为0.97,而平均绝对相对误差很低,仅为0.86%。此外,敏感性分析表明,Burden特征值被认为是最有效的参数作为模型的输入。最后,在提出的QSPR和先前建议的模型之间进行了比较研究,其中没有发现当前模型的优越性。进行误差分析以验证所提出模型的可靠性。结果表明,开发的模型可以适当地估计许多水污染物的对数羟基自由基速率常数,其有希望的R平方为0.97,而平均绝对相对误差很低,仅为0.86%。此外,敏感性分析表明,Burden特征值被认为是最有效的参数作为模型的输入。最后,在提出的QSPR和先前建议的模型之间进行了比较研究,其中没有发现当前模型的优越性。进行误差分析以验证所提出模型的可靠性。结果表明,开发的模型可以适当地估计许多水污染物的对数羟基自由基速率常数,其有希望的R平方为0.97,而平均绝对相对误差很低,仅为0.86%。此外,敏感性分析表明,Burden特征值是模型输入的最有效参数。最后,在提出的QSPR和先前建议的模型之间进行了比较研究,其中没有发现当前模型的优越性。平均绝对相对误差很低,只有0.86%。此外,敏感性分析表明,Burden特征值是模型输入的最有效参数。最后,在提出的QSPR和先前建议的模型之间进行了比较研究,其中没有发现当前模型的优越性。平均绝对相对误差很低,只有0.86%。此外,敏感性分析表明,Burden特征值被认为是最有效的参数作为模型的输入。最后,在提出的QSPR和先前建议的模型之间进行了比较研究,其中没有发现当前模型的优越性。
更新日期:2020-07-21
down
wechat
bug