当前位置: X-MOL 学术Macromol. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a Piezoelectric PVDF-TrFE Fibrous Scaffold to Guide Cell Adhesion, Proliferation, and Alignment.
Macromolecular Bioscience ( IF 4.6 ) Pub Date : 2020-07-20 , DOI: 10.1002/mabi.202000197
Jacob A Orkwis 1 , Ann K Wolf 2 , Syed M Shahid 2 , Corinne Smith 1 , Leyla Esfandiari 2, 3 , Greg M Harris 1, 3, 4
Affiliation  

Severe peripheral nervous system injuries currently hold limited therapeutic solutions. Existing clinical techniques such as autografts, allografts, and newer nerve guidance conduits have shown variable outcomes in functional recovery, adverse immune responses, and in some cases low or minimal availability. This can be attributed in part to the lack of chemical, physical, and electrical cues directing both nerve guidance and regeneration. To address this pressing clinical issue, electrospun nanofibers and microfibers composed of piezoelectric polyvinylidene flouride‐triflouroethylene (PVDF‐TrFE) have been introduced as an alternative template for tissue engineered biomaterials, specifically as it pertains to their relevance in soft tissue and nerve repair. Here, biocompatible scaffolds of PVDF‐TrFE are fabricated and their ability to generate an electrical response to mechanical deformations and produce a suitable regenerative microenvironment is examined. It is determined that 20% (w/v) PVDF‐TrFE in (6:4) dimethyl formamide (DMF):acetone solvent maintains a desirable piezoelectric coefficient and the proper physical and electrical characteristics for tissue regeneration. Further, it is concluded that scaffolds of varying thickness promoted the adhesion and alignment of Schwann cells and fibroblasts. This work offers a prelude to further advancements in nanofibrous technology and a promising outlook for alternative, autologous remedies to peripheral nerve damage.

中文翻译:

开发压电 PVDF-TrFE 纤维支架来引导细胞粘附、增殖和排列。

严重的周围神经系统损伤目前的治疗方案有限。现有的临床技术,如自体移植、同种异体移植和较新的神经引导导管,在功能恢复、不良免疫反应以及在某些情况下可用性低或极低方面显示出不同的结果。这可以部分归因于缺乏指导神经引导和再生的化学、物理和电线索。为了解决这一紧迫的临床问题,由压电聚偏氟乙烯-三氟乙烯 (PVDF-TrFE) 组成的电纺纳米纤维和微纤维已被引入作为组织工程生物材料的替代模板,特别是因为它与它们在软组织和神经修复中的相关性有关。这里,制造了 PVDF-TrFE 的生物相容性支架,并检查了它们对机械变形产生电响应并产生合适的再生微环境的能力。确定在 (6:4) 二甲基甲酰胺 (DMF): 丙酮溶剂中的 20% (w/v) PVDF-TrFE 保持了理想的压电系数和组织再生的适当物理和电特性。此外,可以得出结论,不同厚度的支架促进了雪旺氏细胞和成纤维细胞的粘附和排列。这项工作为纳米纤维技术的进一步进步提供了前奏,并为周围神经损伤的替代自体疗法提供了有希望的前景。确定在 (6:4) 二甲基甲酰胺 (DMF): 丙酮溶剂中的 20% (w/v) PVDF-TrFE 保持了理想的压电系数和组织再生的适当物理和电特性。此外,可以得出结论,不同厚度的支架促进了雪旺氏细胞和成纤维细胞的粘附和排列。这项工作为纳米纤维技术的进一步进步提供了前奏,并为周围神经损伤的替代自体疗法提供了有希望的前景。确定在 (6:4) 二甲基甲酰胺 (DMF): 丙酮溶剂中的 20% (w/v) PVDF-TrFE 保持了理想的压电系数和组织再生的适当物理和电特性。此外,可以得出结论,不同厚度的支架促进了雪旺氏细胞和成纤维细胞的粘附和排列。这项工作为纳米纤维技术的进一步进步提供了前奏,并为周围神经损伤的替代自体疗法提供了有希望的前景。
更新日期:2020-07-20
down
wechat
bug