当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioretrosynthesis of Functionalized N‐Heterocycles from Glucose via One‐Pot Tandem Collaborations of Designed Microbes
Advanced Science ( IF 15.1 ) Pub Date : 2020-07-21 , DOI: 10.1002/advs.202001188
Jing Feng 1, 2 , Ruifeng Li 1, 2 , Shasha Zhang 1, 2 , Yifan Bu 1, 2 , Yanchun Chen 1, 2 , Yinglu Cui 1 , Baixue Lin 1 , Yihua Chen 1 , Yong Tao 1 , Bian Wu 1
Affiliation  

The design of multistrain systems has markedly expanded the prospects of using long biosynthetic pathways to produce natural compounds. However, the cooperative use of artificially engineered microbes to synthesize xenobiotic chemicals from renewable carbohydrates is still in its infancy. Here, a microbial system is developed for the production of high‐added‐value N‐heterocycles directly from glucose. Based on a retrosynthetic analysis, eleven genes are selected, systematically modulated, and overexpressed in three Escherichia coli strains to construct an artificial pathway to produce 5‐methyl‐2‐pyrazinecarboxylic acid, a key intermediate in the production of the important pharmaceuticals Glipizide and Acipimox. Via one‐pot tandem collaborations, the designed microbes remarkably realize high‐level production of 5‐methyl‐2‐pyrazinecarboxylic acid (6.2 ± 0.1 g L−1) and its precursor 2,5‐dimethylpyrazine (7.9 ± 0.7 g L−1). This study is the first application of cooperative microbes for the total biosynthesis of functionalized N‐heterocycles and provides new insight into integrating bioretrosynthetic principles with synthetic biology to perform complex syntheses.

中文翻译:

通过设计微生物的一锅串联合作从葡萄糖生物逆合成功能化 N-杂环

多菌株系统的设计显着扩大了利用长生物合成途径生产天然化合物的前景。然而,合作使用人工工程微生物从可再生碳水化合物合成外源化学物质仍处于起步阶段。在这里,开发了一种微生物系统,用于直接从葡萄糖生产高附加值的氮杂环。基于逆合成分析,选择了 11 个基因,系统地调节并在三种大肠杆菌菌株中过表达,构建了生产 5-甲基-2-吡嗪甲酸的人工途径,5-甲基-2-吡嗪甲酸是生产重要药物格列吡嗪和阿西莫司的关键中间体。通过一锅串联合作,设计的微生物显着实现了5-甲基-2-吡嗪甲酸(6.2 ± 0.1 g L -1)及其前体2,5-二甲基吡嗪(7.9 ± 0.7 g L -1 )的高水平生产。 )。这项研究是协作微生物在功能化氮杂环的全生物合成中的首次应用,并为将生物逆合成原理与合成生物学相结合以进行复杂的合成提供了新的见解。
更新日期:2020-09-10
down
wechat
bug