当前位置: X-MOL 学术Microelectron. Reliab. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MEMS capacitive microphone with various materials in acoustic plate under shock loading
Microelectronics Reliability ( IF 1.6 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.microrel.2020.113749
Chun-Lin Lu , Pei-Rong Ni , Meng-Kao Yeh

Abstract Considering shock loading on the MEMS microphone is necessary for its reliability assessment since drop of portable devices is a common situation. In this study, the stress distribution and the failures of MEMS capacitive microphone chip by TSMC 0.18 μm CMOS process, with 4 by 3 microphone array under shock loading (peak acceleration 1500 g) and shock plus static electricity loading were investigated by simulation and experiment. The results show that larger stresses occur at the corners of springs, the anchors connecting fix end and spring, the location connecting spring and acoustic plate as well as the center of silicon substrate where the same crack locations of microphone after dropping 150 times were identified. The microphone cells located at the chip center had up to 2 times higher stress at stress concentration regions when compared to the stress in those cells near the chip edge. Furthermore, the stress level under shock plus static electricity loading was higher, up to two times, than that in microphone under pure shock loading; and using polysilicon acoustic plate could ease the stress around 25% when compared with that of the original design. This study assessed the stress distribution and the failures of the MEMS capacitive microphone under various loading and valuable suggestions for the microphone design are presented.

中文翻译:

冲击载荷下声学板中各种材料的MEMS电容式麦克风

摘要 考虑到MEMS麦克风上的冲击载荷对其可靠性评估是必要的,因为便携式设备跌落是一种常见的情况。本研究通过仿真和实验研究了TSMC 0.18 μm CMOS工艺、4×3麦克风阵列在冲击载荷(峰值加速度1500 g)和冲击加静电载荷下的MEMS电容式麦克风芯片的应力分布和失效情况。结果表明,弹簧的角部、固定端与弹簧的连接锚固件、弹簧与声板的连接位置以及麦克风在跌落150次后出现相同裂纹位置的硅基板中心处出现较大的应力。与靠近芯片边缘的那些单元中的应力相比,位于芯片中心的麦克风单元在应力集中区域的应力高达 2 倍。此外,冲击加静电载荷下的应力水平比纯冲击载荷下的麦克风高出两倍之多;使用多晶硅吸音板,与原设计相比,可减轻25%左右的应力。本研究评估了 MEMS 电容式麦克风在各种负载下的应力分布和故障,并提出了对麦克风设计的宝贵建议。使用多晶硅吸音板,与原设计相比,可减轻25%左右的应力。本研究评估了 MEMS 电容式麦克风在各种负载下的应力分布和故障,并提出了对麦克风设计的宝贵建议。使用多晶硅吸音板,与原设计相比,可减轻25%左右的应力。本研究评估了 MEMS 电容式麦克风在各种负载下的应力分布和故障,并提出了对麦克风设计的宝贵建议。
更新日期:2020-09-01
down
wechat
bug