当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rate- and Temperature-Dependent Plasticity of Additively Manufactured Stainless Steel 316L: Characterization, Modeling and Application to Crushing of Shell-Lattices
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.ijimpeng.2020.103671
Xueyang Li , Christian C. Roth , Thomas Tancogne-Dejean , Dirk Mohr

Abstract A combined numerical and experimental investigation is carried out on the quasi-static and high strain rate response of additively manufactured stainless steel 316L obtained through selective laser melting. The experimental program comprises experiments on uniaxial tension, shear, notched tension and mini-Nakazima specimens, covering a wide range of stress states and strain rates (from 10−3 to 103/s). An anisotropic quadratic plasticity model with Swift-Voce hardening and Johnson-Cook rate- and temperature-dependence is identified to describe the behavior of the constituent base material under different stress-states and strain rates. Compression experiments at low and high loading speeds are conducted on elastically-isotropic shell-lattice structures to further validate the identified plasticity model in a structural application. It is found that the chosen plasticity model can describe the reaction force and deformation patterns of the smooth shell lattice loaded at different speeds and orientations with good accuracy. The experiments reveal that the additively-manufactured shell-lattices are capable of sustaining macroscopic compressive strains of more than 60% without visible fracture of the cell walls regardless of the loading speed. The comparison with the results for plate-lattice structures of the same mass elucidate the great energy absorption potential of shell-lattices.

中文翻译:

增材制造不锈钢 316L 的速率和温度相关塑性:表征、建模和应用到壳晶格破碎

摘要 对选区激光熔化增材制造的316L不锈钢的准静态和高应变率响应进行了数值和实验相结合的研究。实验程序包括单轴拉伸、剪切、缺口拉伸和迷你 Nakazima 试样的实验,涵盖了广泛的应力状态和应变率(从 10-3 到 103/s)。确定了具有 Swift-Voce 硬化和 Johnson-Cook 速率和温度依赖性的各向异性二次塑性模型,以描述不同应力状态和应变速率下组成基材的行为。对弹性各向同性壳晶格结构进行了低加载和高加载速度下的压缩实验,以进一步验证结构应用中确定的塑性模型。发现所选择的塑性模型可以很好地描述以不同速度和方向加载的光滑壳晶格的反作用力和变形模式。实验表明,无论加载速度如何,增材制造的壳晶格都能承受超过 60% 的宏观压缩应变,而不会出现细胞壁的可见断裂。与相同质量的板-晶格结构的结果的比较阐明了壳-晶格的巨大能量吸收潜力。实验表明,无论加载速度如何,增材制造的壳晶格都能承受超过 60% 的宏观压缩应变,而不会出现细胞壁的可见断裂。与相同质量的板-晶格结构的结果的比较阐明了壳-晶格的巨大能量吸收潜力。实验表明,无论加载速度如何,增材制造的壳晶格都能承受超过 60% 的宏观压缩应变,而不会出现细胞壁的可见断裂。与相同质量的板-晶格结构的结果的比较阐明了壳-晶格的巨大能量吸收潜力。
更新日期:2020-11-01
down
wechat
bug