当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic-Field-Regulated TiO2 {100} Facets: A Strategy for C-C Coupling in CO2 Photocatalytic Conversion
Chem ( IF 23.5 ) Pub Date : 2020-07-21 , DOI: 10.1016/j.chempr.2020.06.033
Meng-Pei Jiang , Ke-Ke Huang , Jing-Hai Liu , Dan Wang , Ying Wang , Xia Wang , Zhi-Da Li , Xi-Yang Wang , Zhi-Bin Geng , Xiang-Yan Hou , Shou-Hua Feng

Solar-driven CO2 conversion is an attractive option for producing usable fuels and chemicals. However, traditionally synthesized TiO2 materials suffer from the low activity of CO2 conversion into multi-carbon products. In this study, for the first time, strong magnetic fields were introduced into the synthesis of TiO2. By regulating the splitting ratio of high-angle and low-angle quantum orbitals, we developed a new type of TiO2{100} facets containing more active low-coordinate Ti atoms. In-situ Fourier transform infrared spectroscopy (FTIR) and DFT calculations both revealed that the interfacial charge redistribution and lattice structure of such TiO2{100} are beneficial to the coupling of adsorbed CO∗. This enables highly efficient conversion of CO2 into C2H5OH with a yield rate of 6.16 μmol g−1 h−1, which is 22-fold higher than that of pristine TiO2. This strategy provides a new platform for desirable photocatalyst synthesis and furthers our understanding of the relationship between atomic orbital control and CO2 conversion.



中文翻译:

磁场调节的TiO 2 {100}面:CO 2光催化转化中CC偶联的策略

太阳能驱动的CO 2转化是生产有用的燃料和化学品的有吸引力的选择。然而,传统上合成的TiO 2材料具有将CO 2转化为多碳产物的低活性的缺点。在这项研究中,首次将强磁场引入了TiO 2的合成中。通过调节高角度和低角度量子轨道的分裂比,我们开发了一种新型的TiO 2 {100}面,该面包含更多的活性低配位Ti原子。原位傅里叶变换红外光谱(FTIR)和DFT计算都表明,这种TiO 2的界面电荷重新分布和晶格结构{100}有利于吸附CO *的偶联。这使得能够以6.16μmolg -1 h -1的产率将CO 2高效地转化为C 2 H 5 OH ,这是原始TiO 2的22倍。该策略为理想的光催化剂合成提供了新的平台,进一步加深了我们对原子轨道控制与CO 2转化之间关系的理解。

更新日期:2020-09-10
down
wechat
bug