当前位置: X-MOL 学术Pramana › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Amorphisation of boron carbide under gamma irradiation
Pramana ( IF 2.8 ) Pub Date : 2020-07-21 , DOI: 10.1007/s12043-020-01980-3
Matlab N Mirzayev , Ertuğrul Demir , Khagani F Mammadov , Vladimir A Sukratov , Sakin H Jabarov , Saphina Biira , Elmar B Asgerov , Bekhzodjon A Abdurakhimov , A Beril Tuğrul

Boron carbide ( $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C ) has been widely used in nuclear reactors and nuclear applications. In this work, the high-purity (99.9%) $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C samples were irradiated using a gamma source ( $$^{\mathrm {60}}\hbox {Co}$$ 60 Co ) with a dose rate ( D ) of 0.27 Gy/s at different gamma irradiation doses at room temperature. Phase and microstructural characterisation of $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C samples were carried out using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results displayed some degradation of the diffraction peaks. The calculations reveal that 62% of $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C has changed into the amorphous phase when the irradiation dose is 194.4 kGy. Fourier transform infrared spectroscopy (FTIR) was used to explain chemical bonds and functional groups of $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C samples before and after gamma irradiation. The results showed that C–C chemical bonds are weaker than B–C chemical bonds and tend to break under gamma irradiation. Element mapping analysis for each gamma irradiation dose of $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C samples was performed using SEM patterns. The dynamics of the elements on the surface and chemical formula of all $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C samples were also determined after gamma irradiation.

中文翻译:

碳化硼在伽马辐射下的非晶化

碳化硼 ( $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C ) 已广泛用于核反应堆和核应用。在这项工作中,高纯度 (99.9%) $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品使用伽马源 ( $$^{\ mathrm {60}}\hbox {Co}$$ 60 Co ) 在室温下不同伽马辐射剂量下的剂量率 ( D ) 为 0.27 Gy/s。$$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的相和微观结构表征使用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 进行。XRD 结果显示衍射峰有一些退化。计算结果表明,当辐照剂量为194.4 kGy时,$$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C的62%已转变为非晶相。傅里叶变换红外光谱(FTIR)用于解释伽马辐射前后$$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C样品的化学键和官能团。结果表明,C-C 化学键比 B-C 化学键弱,在伽马辐射下容易断裂。使用 SEM 模式对 $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的每个伽马辐射剂量进行元素映射分析。所有$$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的表面元素动力学和化学式也在伽马辐照后测定。结果表明,C-C 化学键比 B-C 化学键弱,在伽马辐射下容易断裂。使用 SEM 模式对 $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的每个伽马辐射剂量进行元素映射分析。所有$$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的表面元素动力学和化学式也在伽马辐照后测定。结果表明,C-C 化学键比 B-C 化学键弱,在伽马辐射下容易断裂。使用 SEM 模式对 $$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的每个伽马辐射剂量进行元素映射分析。所有$$\hbox {B}_{\mathrm {4}}\hbox {C}$$ B 4 C 样品的表面元素动力学和化学式也在伽马辐照后测定。
更新日期:2020-07-21
down
wechat
bug