当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use.
Light: Science & Applications ( IF 19.4 ) Pub Date : 2020-07-20 , DOI: 10.1038/s41377-020-00365-w
Jiawen Li 1, 2 , Simon Thiele 3 , Bryden C Quirk 1, 2 , Rodney W Kirk 1, 2 , Johan W Verjans 1, 4, 5 , Emma Akers 4 , Christina A Bursill 1, 4 , Stephen J Nicholls 6 , Alois M Herkommer 3 , Harald Giessen 7 , Robert A McLaughlin 1, 2
Affiliation  

Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes. Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue. However, current fabrication methods limit the imaging performance of highly miniaturized probes, restricting their widespread application. To overcome this limitation, we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics (<130 µm diameter) on single-mode fibers. Using this technique, we built a fully functional ultrathin aberration-corrected optical coherence tomography probe. This is the smallest freeform 3D imaging probe yet reported, with a diameter of 0.457 mm, including the catheter sheath. We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries. The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.



中文翻译:

适用于临床前和临床使用的超薄整体 3D 打印光学相干断层扫描内窥镜。

临床前和临床诊断越来越依赖于通过内窥镜以高分辨率可视化内部器官的技术。小型内窥镜探头对于在不造成组织损伤的情况下对小型管腔或脆弱器官进行成像是必要的。然而,当前的制造方法限制了高度小型化探针的成像性能,限制了其广泛应用。为了克服这一限制,我们开发了一种新颖的超薄探针制造技术,该技术利用 3D 微印刷在单模光纤上可靠地创建侧面自由形状微光学器件(直径<130 µm)。利用这种技术,我们构建了一个功能齐全的超薄像差校正光学相干断层扫描探头。这是迄今为止报道的最小的自由形式 3D 成像探头,直径为 0.457 毫米(包括导管鞘)。我们通过对人类和小鼠动脉粥样硬化进行成像来展示图像质量和机械灵活性。使用最小的光学相干断层扫描导管提供微观结构信息的能力为疾病中新型微创应用打开了大门。

更新日期:2020-07-20
down
wechat
bug