当前位置: X-MOL 学术Rheol. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rheology of aqueous foams under pressure
Rheologica Acta ( IF 2.3 ) Pub Date : 2020-07-19 , DOI: 10.1007/s00397-020-01224-6
Amit Ahuja , Reginald Lee , Peter Foster

Aqueous foams are found in a wide range of industrial applications such as cosmetic, pharmaceutical, and food industries. These foam-based products are typically packaged in aerosol cans that are pressurized up to 3 bar. With pressure fluctuations over time, issues like coarsening and liquid drainage could affect the formulation. However, the rheological studies of foams under pressure are limited by the poor sensitivity and complex designs of traditional pressure cells that impose a lower torque limit of approximately 100 μN ⋅m. In this study, we detail the design and validation of a high-sensitivity pressurized Couette cell that utilizes a novel design to provide sample pressurization (up to 5 bar) with significantly improved torque sensitivity (1 μN ⋅m in oscillatory and 10 μN ⋅m in shear flows). Foam samples present experimental challenges due to a reduction in sample volume when pressurized. This has serious implications if a standard cylindrical cup and bob geometry is used with foam samples as it will be underfilled under pressurized conditions leading to erroneous results. To overcome this difficulty, we have designed a new rotor appropriately dimensioned that ensures a sufficient sample level over the entirety of the rotor under pressurized conditions. We demonstrate the application of this device by characterizing a commercial aqueous foam using traditional rheological methods such as flow ramps, oscillatory strain amplitude sweep, frequency sweep, time sweep, and stress growth under pressurized conditions.

中文翻译:

压力下水性泡沫的流变学

水性泡沫广泛用于工业应用,例如化妆品、制药和食品工业。这些基于泡沫的产品通常包装在加压至 3 巴的气雾罐中。随着时间的推移压力波动,粗化和液体排放等问题可能会影响配方。然而,压力下泡沫的流变学研究受到传统压力传感器灵敏度差和复杂设计的限制,传统压力传感器的扭矩下限约为 100 μN·m。在这项研究中,我们详细介绍了高灵敏度加压 Couette 池的设计和验证,该池利用新颖的设计提供样品加压(高达 5 bar),并显着提高了扭矩灵敏度(1 μN ⋅m 振荡和 10 μN ⋅m在剪切流中)。由于加压时样品体积减少,泡沫样品给实验带来了挑战。如果泡沫样品使用标准圆柱杯和摆锤几何形状,这会产生严重影响,因为在加压条件下填充不足会导致错误结果。为了克服这个困难,我们设计了一种尺寸合适的新转子,以确保在加压条件下整个转子上有足够的样品水平。我们通过使用传统流变学方法(如流动斜坡、振荡应变振幅扫描、频率扫描、时间扫描和加压条件下的应力增长)表征商业水性泡沫来证明该设备的应用。如果泡沫样品使用标准圆柱杯和摆锤几何形状,这会产生严重影响,因为在加压条件下填充不足会导致错误结果。为了克服这个困难,我们设计了一种尺寸合适的新转子,以确保在加压条件下整个转子上有足够的样品水平。我们通过使用传统流变学方法(如流动斜坡、振荡应变振幅扫描、频率扫描、时间扫描和加压条件下的应力增长)表征商业水性泡沫来证明该设备的应用。如果泡沫样品使用标准圆柱杯和摆锤几何形状,这会产生严重影响,因为在加压条件下填充不足会导致错误结果。为了克服这个困难,我们设计了一种尺寸合适的新转子,以确保在加压条件下整个转子上有足够的样品水平。我们通过使用传统流变学方法(如流动斜坡、振荡应变振幅扫描、频率扫描、时间扫描和加压条件下的应力增长)表征商业水性泡沫来证明该设备的应用。我们设计了一个尺寸合适的新转子,确保在加压条件下整个转子上有足够的样品水平。我们通过使用传统流变学方法(如流动斜坡、振荡应变振幅扫描、频率扫描、时间扫描和加压条件下的应力增长)表征商业水性泡沫来证明该设备的应用。我们设计了一个尺寸合适的新转子,确保在加压条件下整个转子上有足够的样品水平。我们通过使用传统流变学方法(如流动斜坡、振荡应变振幅扫描、频率扫描、时间扫描和加压条件下的应力增长)表征商业水性泡沫来证明该设备的应用。
更新日期:2020-07-19
down
wechat
bug