当前位置: X-MOL 学术Future J. Pharm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compaction and tableting properties of composite particles of microcrystalline cellulose and crospovidone engineered for direct compression
Future Journal of Pharmaceutical Sciences Pub Date : 2020-07-17 , DOI: 10.1186/s43094-020-00055-9
Fatima Haruna , Yonni Eshovo Apeji , Chinyere Oparaeche , Avosuahi Rukayat Oyi , Michael Gamlen

Excipients with improved functionality have continued to be developed by the particle engineering strategy of co-processing. The aim of this study was to evaluate the compaction and tableting properties of composite particles of microcrystalline cellulose (MCC) and crospovidone (CPV) engineered by co-processing. Heckel analysis of the compaction behavior revealed a decrease in plasticity of co-processed excipient (CPE) when compared to MCC due to an increase in Heckel yield pressure from 144 to 172 MPa. The compressibility-tabletability-compactibility (CTC) profile revealed a decrease in individual parameters for CPE when compared to MCC. CPE was found to be more sensitive to the lubricant effect of sodium stearyl fumarate (SSF) when compared to MCC and less sensitive to magnesium stearate (MST) when compared to MCC. A higher dilution potential was obtained for MCC (60%) compared to 44% for CPE when metronidazole was used as model drug. Tableting properties revealed that metronidazole tablets generated with CPE by direct compression disintegrated within 15 min and gave a rapid drug release when compared to MCC as a direct compression (DC) excipient. The compaction and tableting properties of CPE were characterized and yielded tablets with better disintegration and drug release profile when compared to MCC. This study, therefore, confirms the suitability of co-processing as a proven strategy in engineering the performance of excipients.

中文翻译:

直接压缩的微晶纤维素和交聚维酮复合颗粒的压实和压片性能

通过协同处理的粒子工程策略,继续开发出具有改进功能的赋形剂。这项研究的目的是评估通过共处理工程设计的微晶纤维素(MCC)和交聚维酮(CPV)复合颗粒的压实和压片性能。Heckel对压实行为的分析表明,与MCC相比,共加工的赋形剂(CPE)的塑性降低,这是由于Heckel屈服压力从144 MPa增加到172 MPa。与MCC相比,可压缩性-可压实性-可压缩性(CTC)曲线显示CPE的各个参数有所降低。与MCC相比,发现CPE对硬脂富马酸钠(SSF)的润滑效果更为敏感,而与MCC相比,对硬脂酸镁(MST)则较不敏感。当使用甲硝唑作为模型药物时,MCC的稀释潜力更高(60%),而CPE的稀释潜力为44%。压片特性表明,与直接压制(DC)赋形剂MCC相比,通过直接压制由CPE生成的甲硝唑片剂在15分钟内崩解,并能快速释放药物。对CPE的压实和压片特性进行了表征,得到的片剂与MCC相比具有更好的崩解性和药物释放特性。因此,这项研究证实了协同处理作为工程化赋形剂性能中一种行之有效的策略的适用性。压片特性表明,与直接压制(DC)赋形剂MCC相比,通过直接压制由CPE生成的甲硝唑片剂在15分钟内崩解,并能快速释放药物。对CPE的压实和压片性能进行了表征,得到的片剂与MCC相比具有更好的崩解和药物释放特性。因此,这项研究证实了协同处理作为工程化赋形剂性能中一种行之有效的策略的适用性。压片特性表明,与直接压制(DC)赋形剂MCC相比,通过直接压制由CPE生成的甲硝唑片剂在15分钟内崩解,并能快速释放药物。对CPE的压实和压片特性进行了表征,得到的片剂与MCC相比具有更好的崩解性和药物释放特性。因此,这项研究证实了协同处理作为工程化赋形剂性能中一种行之有效的策略的适用性。
更新日期:2020-07-17
down
wechat
bug