当前位置: X-MOL 学术IEEE Microw. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microwave Techniques for Quantum Computers: State-of-the-Art Control Systems for Quantum Processors
IEEE Microwave Magazine ( IF 3.6 ) Pub Date : 2020-08-01 , DOI: 10.1109/mmm.2020.2993477
Diego Riste , Spencer Fallek , Brian Donovan , Thomas A. Ohki

Let's boot up a quantum computer. Far from being a simple push of a button, initializing a prototype quantum computer requires the precise tuning and calibration of many different parameters. Rather than switching transistors on and off, the controller of a quantum processor emits combinations of analog waveforms, each with a characteristic shape, frequency, and duration. These waveforms are used to either manipulate or read out the states of quantum bits (qubits), the basic units of quantum information in the processor. The analog nature of the system inherits many of the complexities of analog computing, including device parameter drift and offsets, system component tolerances and variabilities, and other well-known analog-circuit intricacies. Further, de livering these signals to the target qubits necessitates coordination between multiple low-noise and low-jitter instruments. In spite of these challenges, the quantum computing community has made tremendous progress toward useful quantum machines. We hope to provide an instructive introduction to the control, signal generation, and distribution principles currently used in small quantum systems that operate in the microwave frequency regime.

中文翻译:

用于量子计算机的微波技术:用于量子处理器的最先进的控制系统

让我们启动一台量子计算机。远非简单的按下按钮,初始化原型量子计算机需要对许多不同参数进行精确调整和校准。量子处理器的控制器不是打开和关闭晶体管,而是发出模拟波形的组合,每个波形都具有特征形状、频率和持续时间。这些波形用于操纵或读出量子位 (qubit) 的状态,量子位是处理器中量子信息的基本单位。系统的模拟性质继承了模拟计算的许多复杂性,包括设备参数漂移和偏移、系统组件容差和可变性,以及其他众所周知的模拟电路复杂性。更多,将这些信号传送到目标量子位需要多个低噪声和低抖动仪器之间的协调。尽管面临这些挑战,量子计算社区在有用的量子机器方面取得了巨大进步。我们希望对目前在微波频率范围内运行的小型量子系统中使用的控制、信号生成和分配原理进行有益的介绍。
更新日期:2020-08-01
down
wechat
bug