当前位置: X-MOL 学术bioRxiv. Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Contextual dependencies expand the re-usability of genetic inverters
bioRxiv - Synthetic Biology Pub Date : 2020-07-15 , DOI: 10.1101/2020.07.15.204651
Huseyin Tas , Lewis Grozinger , Ruud Stoof , Victor de Lorenzo , Angel Goñi-Moreno

The design and implementation of Boolean logic functions in living cells has become a very active field within synthetic biology. By controlling networks of regulatory proteins, novel genetic circuits are engineered to generate predefined output responses. Although many current implementations focus solely on the genetic components of the circuit, the host context in which the circuit performs is crucial for its outcome. Here, we characterise 20 genetic NOT logic gates (inverters) in up to 7 bacterial-based contexts each, to finally generate 135 different functions. The contexts we focus on are particular combinations of four plasmid backbones and three hosts, two Escherichia coli and one Pseudomonas putida strains. Each NOT logic gate shows seven different logic behaviours, depending on the context. That is, gates can be reconfigured to fit response requirements by changing only contextual parameters. Computational analysis shows that this range of behaviours improves the compatibility between gates, because there are considerably more possibilities for combination than when considering a unique function per genetic construct. Finally, we address the issue of interoperability and portability by measuring, scoring, and comparing gate performance across contexts. Rather than being a limitation, we argue that the effect of the genetic background on synthetic constructs expand the scope of the functions that can be engineered in complex cellular environments, and advocate for considering context as a fundamental design parameter for synthetic biology.

中文翻译:

上下文相关性扩展了遗传逆变器的可重用性

活细胞中布尔逻辑函数的设计和实现已成为合成生物学中非常活跃的领域。通过控制调节蛋白的网络,可以设计出新颖的遗传电路来生成预定义的输出响应。尽管当前许多实现仅将重点放在电路的遗传组件上,但电路执行的宿主环境对其结果至关重要。在这里,我们在多达7个基于细菌的环境中表征20个遗传非逻辑门(反相器),最终产生135种不同的功能。我们关注的环境是四个质粒主链和三个宿主,两个大肠杆菌和一个假单胞菌假单胞菌菌株的特定组合。每个NOT逻辑门根据上下文显示七个不同的逻辑行为。那是,通过仅更改上下文参数,可以重新配置闸门以适合响应要求。计算分析表明,这种行为范围提高了门之间的兼容性,因为与考虑每个基因构建体的独特功能相比,存在更多的组合可能性。最后,我们通过测量,评分和比较跨环境的门性能来解决互操作性和可移植性问题。并非限制,我们认为遗传背景对合成构建体的影响扩展了可以在复杂细胞环境中工程化的功能范围,并主张将背景作为合成生物学的基本设计参数。计算分析表明,这种行为范围改善了门之间的兼容性,因为与考虑每个遗传构建体的独特功能相比,存在更多的组合可能性。最后,我们通过测量,评分和比较跨环境的门性能来解决互操作性和可移植性问题。并非限制,我们认为遗传背景对合成构建体的影响扩展了可以在复杂细胞环境中工程化的功能范围,并主张将背景作为合成生物学的基本设计参数。计算分析表明,这种行为范围提高了门之间的兼容性,因为与考虑每个基因构建体的独特功能相比,存在更多的组合可能性。最后,我们通过测量,评分和比较跨环境的门性能来解决互操作性和可移植性问题。并非限制,我们认为遗传背景对合成构建体的影响扩展了可以在复杂细胞环境中工程化的功能范围,并主张将背景作为合成生物学的基本设计参数。我们通过衡量,评分和比较跨环境的门性能来解决互操作性和可移植性问题。并非限制,我们认为遗传背景对合成构建体的影响扩展了可以在复杂细胞环境中工程化的功能范围,并主张将背景作为合成生物学的基本设计参数。我们通过衡量,评分和比较跨环境的门性能来解决互操作性和可移植性问题。并非限制,我们认为遗传背景对合成构建体的影响扩展了可以在复杂细胞环境中工程化的功能范围,并主张将背景作为合成生物学的基本设计参数。
更新日期:2020-07-16
down
wechat
bug