当前位置: X-MOL 学术Hum. Brain Mapp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating cortico-subcortical circuits during auditory sensory attenuation: A combined magnetoencephalographic and dynamic causal modeling study.
Human Brain Mapping ( IF 4.8 ) Pub Date : 2020-07-14 , DOI: 10.1002/hbm.25134
Lingling Hua 1 , Marc Recasens 1 , Tineke Grent-'t-Jong 1, 2 , Rick A Adams 3 , Joachim Gross 1, 4 , Peter J Uhlhaas 1, 2
Affiliation  

Sensory attenuation refers to the decreased intensity of a sensory percept when a sensation is self‐generated compared with when it is externally triggered. However, the underlying brain regions and network interactions that give rise to this phenomenon remain to be determined. To address this issue, we recorded magnetoencephalographic (MEG) data from 35 healthy controls during an auditory task in which pure tones were either elicited through a button press or passively presented. We analyzed the auditory M100 at sensor‐ and source‐level and identified movement‐related magnetic fields (MRMFs). Regression analyses were used to further identify brain regions that contributed significantly to sensory attenuation, followed by a dynamic causal modeling (DCM) approach to explore network interactions between generators. Attenuation of the M100 was pronounced in right Heschl's gyrus (HES), superior temporal cortex (ST), thalamus, rolandic operculum (ROL), precuneus and inferior parietal cortex (IPL). Regression analyses showed that right postcentral gyrus (PoCG) and left precentral gyrus (PreCG) predicted M100 sensory attenuation. In addition, DCM results indicated that auditory sensory attenuation involved bi‐directional information flow between thalamus, IPL, and auditory cortex. In summary, our data show that sensory attenuation is mediated by bottom‐up and top‐down information flow in a thalamocortical network, providing support for the role of predictive processing in sensory‐motor system.

中文翻译:

调查听觉感觉衰减期间的皮质 - 皮质下回路:脑磁图和动态因果模型研究相结合。

感觉衰减是指感觉自产生时与外部触发时相比,感觉知觉的强度降低。然而,导致这种现象的潜在大脑区域和网络相互作用仍有待确定。为了解决这个问题,我们在听觉任务期间记录了来自 35 名健康对照的脑磁图 (MEG) 数据,其中纯音要么通过按下按钮引发,要么被动呈现。我们在传感器和源级别分析了听觉 M100,并确定了运动相关磁场 (MRMF)。回归分析用于进一步识别对感觉衰减有显着贡献的大脑区域,然后使用动态因果建模 (DCM) 方法来探索生成器之间的网络交互。M100 的衰减在右侧 Heschl 回 (HES)、上颞叶皮层 (ST)、丘脑、罗兰盖 (ROL)、楔前叶和下顶叶皮层 (IPL) 中明显。回归分析显示右中央后回 (PoCG) 和左中央前回 (PreCG) 预测 M100 感觉衰减。此外,DCM 结果表明,听觉感觉衰减涉及丘脑、IPL 和听觉皮层之间的双向信息流。总之,我们的数据表明,感觉衰减是由丘脑皮质网络中自下而上和自上而下的信息流介导的,为预测处理在感觉运动系统中的作用提供了支持。回归分析显示右中央后回 (PoCG) 和左中央前回 (PreCG) 预测 M100 感觉衰减。此外,DCM 结果表明,听觉感觉衰减涉及丘脑、IPL 和听觉皮层之间的双向信息流。总之,我们的数据表明,感觉衰减是由丘脑皮质网络中自下而上和自上而下的信息流介导的,为预测处理在感觉运动系统中的作用提供了支持。回归分析显示右中央后回 (PoCG) 和左中央前回 (PreCG) 预测 M100 感觉衰减。此外,DCM 结果表明,听觉感觉衰减涉及丘脑、IPL 和听觉皮层之间的双向信息流。总之,我们的数据表明,感觉衰减是由丘脑皮质网络中自下而上和自上而下的信息流介导的,为预测处理在感觉运动系统中的作用提供了支持。
更新日期:2020-09-21
down
wechat
bug