当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of modern computational chemistry and ASPEN PLUS for chemical process design
AIChE Journal ( IF 3.7 ) Pub Date : 2020-07-14 , DOI: 10.1002/aic.16987
Chang‐Che Tsai, Shiang‐Tai Lin

Thermodynamic properties and fluid phase equilibria are crucial for the design and development of a chemical process. However, such data may not always be available, particularly for fine or specialty chemicals. In this work, we evaluate the reliability of using modern computational chemistry combined with recently developed predictive thermodynamic models to provide all the thermodynamic properties required in process design with ASPEN PLUS. Specifically, the G3 method is used for the ideal gas heat capacities and properties of formation, and the PR+COSMOSAC equation of state and COSMO‐SAC activity coefficient model are utilized for the properties and phase behaviors of pure and mixture fluids. These methods are chosen because they do not require any species‐dependent parameters and can, in principle, be applied to any chemical species. For a set of 972 chemicals, it is found that most properties can be predicted with a satisfactory accuracy (less than 10%: critical temperature [5%], critical pressure [10%], critical volume [5%], constant pressure ideal gas heat capacity [5%], and heat of vaporization [10%], except for the acentric factor [33%] and vapor pressure [73%]). Furthermore, the predicted results show little bias suggesting that these theoretically based methods are reliable for new chemicals for which experimental data are not yet available. Our analyses show that better accuracy in the prediction of vapor pressure and formation enthalpy and free energy is necessary for the design of chemical processes without relying on any experimental input. Nonetheless, these methods often provide reliable relative property values (e.g., relative value of normal boiling temperature can be predicted with 94% accuracy), making it possible to screen for new chemicals for improving existing processes.

中文翻译:

将现代计算化学与ASPEN PLUS集成用于化学过程设计

热力学性质和液相平衡对于化学过程的设计和开发至关重要。但是,此类数据可能并不总是可用,特别是对于精细或特种化学品。在这项工作中,我们评估使用现代计算化学方法与最近开发的预测热力学模型相结合的可靠性,以提供ASPEN PLUS工艺设计中所需的所有热力学性质。具体而言,G3方法用于理想的气体热容和地层性质,PR + COSMOSAC状态方程和COSMO-SAC活度系数模型用于纯净流体和混合流体的性质和相行为。选择这些方法是因为它们不需要任何与物种有关的参数,并且原则上可以应用于任何化学物种。对于一组972种化学药品,发现可以以令人满意的精度预测大多数特性(小于10%:临界温度[5%],临界压力[10%],临界体积[5%],理想恒压)气体热容[5%]和汽化热[10%],但偏心率[33%]和蒸汽压[73%]除外)。此外,预测结果几乎没有偏差,表明这些基于理论的方法对于尚无法获得实验数据的新化学品是可靠的。我们的分析表明,在不依赖任何实验输入的情况下,化学过程设计中必须有更好的蒸气压,地层焓和自由能预测精度。但是,这些方法通常会提供可靠的相对属性值(例如,
更新日期:2020-09-11
down
wechat
bug