当前位置: X-MOL 学术Solid State Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural, physical and photocatalytic properties of mixed-valence double-perovskite Ba2Pr(Bi,Sb)O6 semiconductor synthesized by citrate pyrolysis technique
Solid State Sciences ( IF 3.5 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.solidstatesciences.2020.106352
Arisa Sato , Michaki Matsukawa , Haruka Taniguchi , Shunsuke Tsuji , Kazume Nishidate , Sumio Aisawa , Akiyuki Matsushita , Kun Zhang

Abstract We demonstrated crystal structures, magnetic, optical, and photocatalytic properties of the B-site substituted double perovskite Ba2Pr(Bi1–xSbx)O6 (x = 0, 0.1, 0.2, 0.5 and 1.0) synthesized by the citrate pyrolysis method. The single-phase polycrystalline samples with the light Sb substitution crystallized in a monoclinic structure ( I 2 / m ). Magnetization measurements on all the samples showed that the effective magnetic moments are concentrated around 3 μ B , indicating the valence mixing states between Pr3+ and Pr4+. The magnitudes of band gap energy for the two end member samples were estimated from the optical measurements to be E g = 1.06 eV at x = 0 and 2.71 eV at x = 1.0. The Ba2Pr(Bi1–xSbx)O6 (x = 0, and 0.1) powders obtained by the present technique exhibited enhanced photocatalytic activities when compared to the same compounds prepared by the conventional solid state method. Our findings suggest that the higher photocatalytic activities strongly depend on powder preparation methods as well as the band gaps and photogenerated charge separation.

中文翻译:

柠檬酸盐热解法合成的混合价双钙钛矿 Ba2Pr(Bi,Sb)O6 半导体的结构、物理和光催化性能

摘要 我们展示了通过柠檬酸盐热解法合成的 B 位取代双钙钛矿 Ba2Pr(Bi1–xSbx)O6 (x = 0, 0.1, 0.2, 0.5 和 1.0) 的晶体结构、磁性、光学和光催化性能。具有轻Sb取代的单相多晶样品以单斜结构(I 2 / m )结晶。对所有样品的磁化测量表明,有效磁矩集中在 3 μ B 附近,表明 Pr3+ 和 Pr4+ 之间的价混合状态。根据光学测量估计,两个端部成员样品的带隙能量的大小在 x = 0 时为 E g = 1.06 eV,在 x = 1.0 时为 2.71 eV。Ba2Pr(Bi1–xSbx)O6 (x = 0, and 0. 1) 与通过常规固态方法制备的相同化合物相比,通过本技术获得的粉末表现出增强的光催化活性。我们的研究结果表明,更高的光催化活性很大程度上取决于粉末制备方法以及带隙和光生电荷分离。
更新日期:2020-09-01
down
wechat
bug