当前位置: X-MOL 学术Biosyst. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of passive downdraught evaporative cooling windcatcher for greenhouses in hot climatic conditions: Parametric study and impact of neighbouring structures
Biosystems Engineering ( IF 5.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.biosystemseng.2020.06.016
Marouen Ghoulem , Khaled El Moueddeb , Ezzedine Nehdi , Fangliang Zhong , John Calautit

In hot climates, greenhouse cooling is essential to provide crops with suitable growth conditions. The combination of natural ventilation strategy such as windcatchers and evaporative cooling has the capability to decrease the energy requirement of greenhouses and provide improved conditions for the cultivation of crops. Although the windcatcher is a traditional architectural feature which originated in the Middle East, it has recently gained more attention and is increasingly being employed in buildings as a wind-driven cooling technique. This study aims to investigate the potential of a passive windcatcher and evaporative cooling system integrated into a greenhouse using computational fluid dynamics (CFD), validated with experimental data. Different wind speeds (1.96, 3.03, 4.87 and 6.07 m s−1) and ambient temperatures (30, 35, 40, 45 °C) and relative humidity (15, 25, 35 and 45%) were considered. The average error between measured and simulated results was 5.43% for the cross-flow ventilated greenhouse model and 4.55% for the evaporative cooling spray model. The results showed that the system could reduce the average indoor air temperature by up to 17.13 °C. The study explored the influence of different windcatcher heights and also the potential of fins installed in the windward openings to improve the uniformity of the ventilation airflow. The study also assessed the influence of neighbouring structures or other greenhouses on the ventilation performance. The results showed that the windcatcher provided higher airflow rates as compared to side openings when other structures surrounded the greenhouse.

中文翻译:

炎热气候条件下温室被动下吸式蒸发冷却捕风器的分析:参数研究和相邻结构的影响

在炎热气候下,温室降温对于为作物提供合适的生长条件至关重要。集风器和蒸发冷却等自然通风策略相结合,能够降低温室的能源需求,并为作物种植提供更好的条件。捕风器虽然是起源于中东的传统建筑特色,但最近受到越来越多的关注,并越来越多地作为一种风力驱动的冷却技术应用于建筑中。本研究旨在使用计算流体动力学 (CFD) 研究集成到温室中的被动捕风器和蒸发冷却系统的潜力,并通过实验数据进行验证。不同的风速(1.96、3.03、4.87 和 6.07 m s−1)和环境温度(30、35、40、45 °C) 和相对湿度(15、25、35 和 45%)被考虑在内。横流通风温室模型的测量结果和模拟结果之间的平均误差为 5.43%,蒸发冷却喷雾模型的平均误差为 4.55%。结果表明,该系统可将平均室内空气温度降低高达 17.13°C。该研究探讨了不同捕风器高度的影响,以及安装在迎风口的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。横流通风温室模型的测量结果和模拟结果之间的平均误差为 5.43%,蒸发冷却喷雾模型的平均误差为 4.55%。结果表明,该系统可将平均室内空气温度降低高达 17.13°C。该研究探讨了不同捕风器高度的影响,以及安装在迎风口的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。横流通风温室模型的测量结果和模拟结果之间的平均误差为 5.43%,蒸发冷却喷雾模型的平均误差为 4.55%。结果表明,该系统可将平均室内空气温度降低高达 17.13°C。该研究探讨了不同捕风器高度的影响,以及安装在迎风口的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。55% 用于蒸发冷却喷雾模型。结果表明,该系统可将平均室内空气温度降低高达 17.13 °C。该研究探讨了不同捕风器高度的影响,以及安装在迎风口的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。55% 用于蒸发冷却喷雾模型。结果表明,该系统可将平均室内空气温度降低高达 17.13°C。该研究探讨了不同捕风器高度的影响,以及安装在迎风口的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。该研究探讨了不同捕风器高度的影响,以及安装在迎风口的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。该研究探讨了不同捕风器高度的影响以及安装在迎风口中的翅片改善通风气流均匀性的潜力。该研究还评估了相邻结构或其他温室对通风性能的影响。结果表明,当其他结构围绕温室时,捕风器提供比侧开口更高的气流速率。
更新日期:2020-09-01
down
wechat
bug