当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrittlement
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2020-07-13 , DOI: 10.1016/j.jmps.2020.104093
Philip K. Kristensen , Christian F. Niordson , Emilio Martínez-Pañeda

We present a gradient-based theoretical framework for predicting hydrogen assisted fracture in elastic-plastic solids. The novelty of the model lies in the combination of: (i) stress-assisted diffusion of solute species, (ii) strain gradient plasticity, and (iii) a hydrogen-sensitive phase field fracture formulation, inspired by first principles calculations. The theoretical model is numerically implemented using a mixed finite element formulation and several boundary value problems are addressed to gain physical insight and showcase model predictions. The results reveal the critical role of plastic strain gradients in rationalising decohesion-based arguments and capturing the transition to brittle fracture observed in hydrogen-rich environments. Large crack tip stresses are predicted, which in turn raise the hydrogen concentration and reduce the fracture energy. The computation of the steady state fracture toughness as a function of the cohesive strength shows that cleavage fracture can be predicted in otherwise ductile metals using sensible values for the material parameters and the hydrogen concentration. In addition, we compute crack growth resistance curves in a wide variety of scenarios and demonstrate that the model can appropriately capture the sensitivity to: the plastic length scales, the fracture length scale, the loading rate and the hydrogen concentration. Model predictions are also compared with fracture experiments on a modern ultra-high strength steel, AerMet100. A promising agreement is observed with experimental measurements of threshold stress intensity factor Kth over a wide range of applied potentials.



中文翻译:

氢脆的弹性梯度塑性固体相场模型

我们提出了一种基于梯度的理论框架,用于预测弹塑性固体中的氢辅助断裂。该模型的新颖之处在于:(一)受第一性原理计算的启发,(一)应力辅助的溶质种类扩散,(二)应变梯度可塑性,(三)氢敏感相场断裂公式。理论模型是使用混合有限元公式在数值上实现的,并且解决了一些边界值问题,以获取物理洞察力并展示模型预测。结果揭示了塑性应变梯度在合理化基于脱粘力的论据和捕获在富氢环境中观察到的脆性断裂过渡过程中的关键作用。预计会出现较大的裂纹尖端应力,反过来会提高氢气浓度并降低压裂能量。稳态断裂韧度作为内聚强度的函数的计算表明,可以使用其他合理的材料参数值和氢浓度预测其他韧性金属中的断裂断裂。此外,我们在各种情况下计算了裂纹扩展阻力曲线,并证明了该模型可以适当地捕获以下方面的敏感性:塑性长度尺度,断裂长度尺度,加载速率和氢浓度。模型预测还与现代超高强度钢AerMet100上的断裂实验进行了比较。通过实验测量阈值应力强度因子可以观察到有希望的协议 稳态断裂韧度作为内聚强度的函数的计算表明,可以使用其他合理的材料参数值和氢浓度预测其他韧性金属中的断裂断裂。此外,我们在各种情况下计算了裂纹扩展阻力曲线,并证明了该模型可以适当地捕获以下方面的敏感性:塑性长度尺度,断裂长度尺度,加载速率和氢浓度。模型预测还与现代超高强度钢AerMet100上的断裂实验进行了比较。通过实验测量阈值应力强度因子可以观察到有希望的协议 稳态断裂韧度作为内聚强度的函数的计算表明,可以使用其他合理的材料参数值和氢浓度预测其他韧性金属中的断裂断裂。此外,我们在各种情况下计算了裂纹扩展阻力曲线,并证明了该模型可以适当地捕获以下方面的敏感性:塑性长度尺度,断裂长度尺度,加载速率和氢浓度。模型预测还与现代超高强度钢AerMet100上的断裂实验进行了比较。通过实验测量阈值应力强度因子可以观察到有希望的协议 塑性长度尺度,断裂长度尺度,加载速率和氢浓度。模型预测还与现代超高强度钢AerMet100上的断裂实验进行了比较。通过实验测量阈值应力强度因子可以观察到有希望的协议 塑性长度尺度,断裂长度尺度,加载速率和氢浓度。模型预测还与现代超高强度钢AerMet100上的断裂实验进行了比较。通过实验测量阈值应力强度因子可以观察到有希望的协议在各种应用电势中的K

更新日期:2020-07-13
down
wechat
bug