当前位置: X-MOL 学术J. Korean Phys. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural, Electronic and Optical Characteristics of HgSiX2 (X=P, As) Chalcopyrite Materials: A DFT-Based Computer Simulation
Journal of the Korean Physical Society ( IF 0.6 ) Pub Date : 2020-07-01 , DOI: 10.3938/jkps.77.72
Shah Khalid , Rabah Khenata , Yue Ma , Xiaoliang Sun , Meng Gao , Haicheng Wu , Guiwu Lu , Zhenqing Yang

In the present work, we determined the structural, electronic and optical properties of HgSiX2 (X = P, As) chalcopyrite materials by using the density functional theory (DFT). Our calculated results showed alignment with the data drawn from other experimental and theoretical studies. Therefore including the lattice parameters, bulk moduli, band gaps, the total and partial densities of states and the optical properties. The computed band structures and density of states (DOS) disclosed that HgSiP2 and HgSiAs2 are semiconductors materials with energy gaps equal to 0.931 eV and 0.425 eV, respectively. Our findings displace that the Si-3p, P-3p and As-4p atomic orbitals contribute to the density of states. Moreover, a comprehensive analysis of the electronic and the optical properties such as the reflectivity, absorption spectra, and dielectric functions revealed that the HgSiP2 and the HgSiAs2 materials may be beneficial in optoelectronic applications. We hope that the designs and preparations of the HgSiP2 and the HgSiAs2 materials will lead to give new advance strategies and gateways for the explorations of highly efficient optoelectronic devices.

中文翻译:

HgSiX2 (X=P, As) 黄铜矿材料的结构、电子和光学特性:基于 DFT 的计算机模拟

在目前的工作中,我们使用密度泛函理论 (DFT) 确定了 HgSiX2 (X = P, As) 黄铜矿材料的结构、电子和光学特性。我们的计算结果显示与其他实验和理论研究得出的数据一致。因此包括晶格参数、体模量、带隙、状态的总密度和部分密度以及光学特性。计算的能带结构和态密度 (DOS) 表明 HgSiP2 和 HgSiAs2 是能隙分别等于 0.931 eV 和 0.425 eV 的半导体材料。我们的发现取代了 Si-3p、P-3p 和 As-4p 原子轨道对状态密度的贡献。此外,对电子和光学特性(如反射率、吸收光谱、和介电函数表明 HgSiP2 和 HgSiAs2 材料可能有利于光电应用。我们希望 HgSiP2 和 HgSiAs2 材料的设计和制备将为探索高效光电器件提供新的先进策略和途径。
更新日期:2020-07-01
down
wechat
bug