当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reactive chemical transport simulations of geologic carbon sequestration: Methods and applications
Earth-Science Reviews ( IF 12.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.earscirev.2020.103265
Zhenxue Dai , Lulu Xu , Ting Xiao , Brian McPherson , Xiaoying Zhang , Liange Zheng , Shuning Dong , Zhijie Yang , Mohamad Reza Soltanian , Changbing Yang , William Ampomah , Wei Jia , Shangxian Yin , Tianfu Xu , Diana Bacon , Hari Viswanathan

Abstract Chemical reaction simulations are considerably used to quantitatively assess the long-term geologic carbon sequestration (GCS), such as CO2 sequestration capacity estimations, leakage pathway analyses, enhanced oil recovery (EOR) efficiency studies, and risk assessments of sealing formations (caprocks), wellbores, and overlying underground water resources. All these require a deep understanding of the CO2 -associated chemical reactions. To ensure long-term, safe CO2 sequestration in the intended formations, modeling is the only way to plausibly assess the CO2 flow, reaction, and transport over thousands of years. This review summarizes the multiple methodologies for describing homogeneous and heterogeneous chemical reaction patterns and multiscale application examples, the recent progress and current status of chemical reaction simulations for GCS, and the impact of such simulations on geological CO2 sequestration performance. Technical gaps and future challenges are also discussed for further study. The trends and challenges of such studies include: (1) the combination of coupled chemical, mechanical, and transport processes with calibrated experiments and associated uncertainty/risk assessments; (2) enhancement of the ability to simulate detailed geophysical and geochemical equations to mimic in situ conditions; and (3) characterization of multiscale subsurface systems with detailed conceptual models and assignment of suitable boundary conditions for field-scale sequestration fields. One major issue remaining is the current lack of accurate (or scale-justified) kinetic and equilibrium chemical reaction parameters under reservoir conditions. Advanced models that couple chemical, mechanical, and transport processes with scale-justified parameters, from lab to field-scale experiments, are required for quantitative assessments of sequestration capacity and the long-term safety of GCS projects.

中文翻译:

地质固碳的反应化学输运模拟:方法和应用

摘要 化学反应模拟大量用于定量评估长期地质碳封存 (GCS),例如 CO2 封存能力估计、泄漏路径分析、提高石油采收率 (EOR) 效率研究和密封地层(盖层)的风险评估、井筒和上覆地下水资源。所有这些都需要对与 CO2 相关的化学反应有深入的了解。为了确保在预期地层中长期、安全地封存 CO2,建模是对数千年来 CO2 流动、反应和传输进行合理评估的唯一方法。这篇综述总结了描述均相和非均相化学反应模式的多种方法和多尺度应用实例,GCS 化学反应模拟的最新进展和现状,以及此类模拟对地质 CO2 封存性能的影响。还讨论了技术差距和未来挑战以供进一步研究。此类研究的趋势和挑战包括:(1) 将耦合的化学、机械和传输过程与校准实验和相关的不确定性/风险评估相结合;(2) 增强模拟详细地球物理和地球化学方程以模拟原位条件的能力;(3) 具有详细概念模型的多尺度地下系统的表征,并为现场尺度封存场指定合适的边界条件。剩下的一个主要问题是目前缺乏准确的(或规模合理的)动力学和平衡化学反应参数在储层条件下。从实验室到现场规模实验,将化学、机械和运输过程与规模合理的参数相结合的高级模型是对 GCS 项目的封存能力和长期安全性的定量评估所必需的。
更新日期:2020-09-01
down
wechat
bug