当前位置: X-MOL 学术Front. Earth Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crystal Size Distribution (CSD) Analysis of Volcanic Samples: Advances and Challenges
Frontiers in Earth Science ( IF 2.9 ) Pub Date : 2020-06-23 , DOI: 10.3389/feart.2020.00291
Katharine V. Cashman

Studies of magmatic systems have long used the textures of erupted samples to infer processes that control the location and duration of magma storage and drive volcanic eruptions from these storage regions. Models of volcanic processes and magmatic systems have evolved substantially over the past decades, in large part because of advances in analytical and experimental techniques. Cooling- and decompression-experiments have greatly enhanced our understanding of crystal textures produced by crystallization associated with volcanic eruptions, while advances in compositional mapping, isotopic analysis and diffusion chronometry provide the tools to unravel complex histories of individual crystals. Experiments, however, have failed to replicate the full range of groundmass textures observed in volcanic samples and the recognition that magma commonly includes both indigenous (grown from the transporting liquid) and exogenous (incorporated from elsewhere in the system) crystals complicates interpretation of crystal populations in volcanic samples. Analysis and interpretation of crystal size distributions (CSDs) and other physical measures of crystal populations, in particular, have yet to fully account for crystal populations with diverse origins and growth histories. Here I assess the extent to which experiments replicate observed crystal populations and thus can be used to improve understanding of volcanic processes. I then review conditions under which the size characteristics of crystal populations can be reasonably interpreted, examine possible reasons for experimental failure to achieve the very high crystal number densities that characterize some eruptive samples, and suggest ways to link CSD analysis to other techniques that seek to constrain the origin of the complex crystal populations. Finally, I show that compositionally based crystal size measurements are critical for interpreting different stages of crystal growth and can be yield well constrained growth histories if linked to diffusion time scales and phase constraints on crystallization conditions.



中文翻译:

火山样品的晶体尺寸分布(CSD)分析:进展和挑战

岩浆系统的研究长期以来一直使用喷发样品的质地来推断控制岩浆储藏位置和持续时间并驱使火山从这些储藏区喷发的过程。在过去的几十年中,火山过程和岩浆系统的模型已经发生了很大的变化,这在很大程度上是由于分析和实验技术的进步。冷却和减压实验极大地增强了我们对与火山喷发相关的结晶产生的晶体织构的理解,而成分映射,同位素分析和扩散计时等方面的进展为揭示单个晶体的复杂历史提供了工具。实验,但是 未能复制出在火山岩样品中观察到的全部地面质量结构,并且认识到岩浆通常既包括原生(从运输液体中生长)也包括外来(从系统中其他地方掺入)晶体,这使得对火山岩样品中晶体种群的解释变得复杂。晶体大小分布(CSD)的分析和解释以及晶体种群的其他物理测量,尤其是尚未完全说明具有不同起源和生长历史的晶体种群。在这里,我评估了实验复制观察到的晶体种群的程度,因此可以用来增进对火山过程的了解。然后,我回顾了可以合理解释晶体种群大小特征的条件,研究可能无法达到较高的晶体密度的实验失败原因,这些晶体密度是某些喷发性样品的特征,并提出了将CSD分析与其他试图限制复杂晶体种群起源的技术联系起来的方法。最后,我表明基于成分的晶体尺寸测量对于解释晶体生长的不同阶段至关重要,如果与扩散时间尺度和结晶条件下的相约束联系在一起,则可以得到受约束的生长历史。

更新日期:2020-07-10
down
wechat
bug