当前位置: X-MOL 学术J. Struct. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of axial stress in maximum sustainable fluid pressure in Andersonian and non-Andersonian crust: A field-based numerical study from the Southern Andes (39ºS)
Journal of Structural Geology ( IF 3.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jsg.2020.104131
Tomás Roquer , Gloria Arancibia , Julie Rowland , Eugenio A. Veloso , Eduardo Molina , Jorge G.F. Crempien , Diego Morata

Abstract Fracture opening at low differential stress controls maximum sustainable fluid pressure (λ) within cohesive brittle crust. Standard Andersonian stress states occur when two conditions are met: (1) one of the principal stresses σ1≥σ2≥σ3 is vertical, and (2) failure occurs at optimal orientations so that stress tensor shape ratio ϕ=(σ2-σ3)/(σ1- σ3) is irrelevant. Here we explore the role of ϕ-values (axial compression, triaxial and axial tension) on sustainable fluid pressure driving rock failure under general stress states. We analyzed two exposures representing tectonics of the Southern Andes. Calculated failure curves in λ-depth space indicate that hydrostructural behavior of general stress states is governed by the steepest of the principal stresses and ϕ−value. Generally, hydrostructural behavior falls within standard Andersonian λ-depth conditions. However, field-examples suggest that non-Andersonian axial stresses may sustain fluid pressures that depart from the standard Andersonian condition: the lowest fluid pressures occur under subvertical axial compression and subhorizontal axial tension; and the highest fluid pressures occur under subvertical axial tension and subhorizontal axial compression. Since around a 15% of global stress compilations correspond to one of these categories, it follows that a significant portion of tectonic regimes potentially define a hydrostructural infrastructure different from standard Andersonian crust.

中文翻译:

轴向应力对安德森地壳和非安德森地壳最大可持续流体压力的影响:南安第斯山脉(39ºS)的基于场的数值研究

摘要 低应力差下的裂缝张开控制着粘性脆性地壳内的最大可持续流体压力 (λ)。当满足两个条件时会出现标准安德森应力状态:(1) 主应力 σ1≥σ2≥σ3 之一是垂直的,并且 (2) 失效发生在最佳方向,因此应力张量形状比 ϕ=(σ2-σ3)/ (σ1-σ3) 无关紧要。在这里,我们探讨了 ϕ 值(轴向压缩、三轴和轴向拉伸)在一般应力状态下可持续流体压力驱动岩石破坏的作用。我们分析了代表南安第斯山脉构造的两次暴露。λ 深度空间中计算的破坏曲线表明,一般应力状态的水文结构行为受主应力和 ϕ−值中最陡峭的控制。一般来说,水结构行为属于标准安德森 λ 深度条件。然而,现场实例表明,非安德森轴向应力可以承受与标准安德森条件不同的流体压力:最低流体压力发生在近垂直轴向压缩和亚水平轴向拉伸下;最高的流体压力出现在近垂直轴向拉伸和亚水平轴向压缩下。由于大约 15% 的全球应力汇编对应于这些类别之一,因此很大一部分构造制度可能定义了不同于标准安德森地壳的水文结构基础设施。最低流体压力出现在近垂直轴压和近水平轴拉力下;最高的流体压力出现在近垂直轴向拉伸和亚水平轴向压缩下。由于大约 15% 的全球应力汇编对应于这些类别之一,因此很大一部分构造制度可能定义了不同于标准安德森地壳的水文结构基础设施。最低流体压力出现在近垂直轴压和近水平轴拉力下;最高的流体压力出现在近垂直轴向拉伸和亚水平轴向压缩下。由于大约 15% 的全球应力汇编对应于这些类别之一,因此很大一部分构造制度可能定义了不同于标准安德森地壳的水文结构基础设施。
更新日期:2020-11-01
down
wechat
bug