当前位置: X-MOL 学术Solid State Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of mixed glass former on AC conductivity and dielectric properties of 70[xTeO2+(1-x)B2O3]+15Na2O+15K2O glass system
Solid State Sciences ( IF 3.5 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.solidstatesciences.2020.106345
S.A. Shuhaimi , R. Hisam , A.K. Yahya

Abstract Mixed glass former of composition 70[xTeO2+(1-x)B2O3]+15Na2O+15K2O where x = 0–0.7 mol% have been prepared by melt quenching method to investigate their structural, AC conductivity, and dielectric properties. The variation of conductivity (σ′) with TeO2 showed a non-linear behaviour, where decrease to a minimum value at x = 0.4 mol% before increasing for x > 0.4 mol%. The minimum is suggested to be due to the low migration of Na+ and K+ ions caused by the mixed glass former effect (MGFE). Meanwhile, dielectric constant (e′) showed a slight increase for x ≤ 0.4 mol% followed by a large increase for x ≥ 0.5 mol% TeO2. The large increase in dielectric constant (e′) for x ≥ 0.5 mol% is suggested to be due to the presence of some crystalline phase within the amorphous matrix. Structural analysis of the present glass system reveals N4 reached minima at x = 0.2 mol% and 0.4 mol% with addition of TeO2 which attributed to the structural changes due to the conversion of BO4 to BO3 units. Glass transition temperature, Tg exhibited a non-linear increase for x ≤ 0.5 mol% followed by a large increase at x > 0.5 mol%. The conduction mechanism at low frequency region was found to be Inverse – Overlapping Large Polaron Tunnelling (Inverse – OLPT) for x ≤ 0.5 mol%, while the mechanism transformed to the OLPT model for x = 0.7 mol%. The electric modulus of the present glass system showed an asymmetric peak of M’, that reflected a non-Debye type relaxation.

中文翻译:

混合玻璃形成剂对70[xTeO2+(1-x)B2O3]+15Na2O+15K2O玻璃体系交流电导率和介电性能的影响

摘要 采用熔融淬火法制备了组成为 70[xTeO2+(1-x)B2O3]+15Na2O+15K2O(其中 x = 0–0.7 mol%)的混合玻璃成型体,以研究其结构、交流电导率和介电性能。电导率 (σ') 随 TeO2 的变化表现出非线性行为,在 x = 0.4 mol% 时降至最小值,然后在 x > 0.4 mol% 时增加。建议最小值是由于混合玻璃形成效应 (MGFE) 引起的 Na+ 和 K+ 离子的低迁移。同时,介电常数 (e') 在 x ≤ 0.4 mol% 时略有增加,然后在 x ≥ 0.5 mol% TeO2 时显着增加。x ≥ 0.5 mol% 时介电常数 (e') 的大幅增加被认为是由于非晶基质中存在一些结晶相。本玻璃系统的结构分析显示 N4 在 x = 0.2 mol% 和 0.4 mol% 时达到最小值,加入 TeO2 归因于由于 BO4 转化为 BO3 单元的结构变化。玻璃化转变温度,Tg 在 x ≤ 0.5 mol% 时呈现非线性增加,然后在 x > 0.5 mol% 时大幅增加。发现低频区域的传导机制为逆 – 重叠大极化子隧道(逆 – OLPT),x ≤ 0.5 mol%,而该机制转化为 x = 0.7 mol% 的 OLPT 模型。本玻璃系统的电模量显示出 M' 的不对称峰,这反映了非德拜型弛豫。当 x ≤ 0.5 mol% 时,Tg 表现出非线性增加,然后在 x > 0.5 mol% 时出现大幅增加。发现低频区域的传导机制为逆 – 重叠大极化子隧道(逆 – OLPT),x ≤ 0.5 mol%,而该机制转化为 x = 0.7 mol% 的 OLPT 模型。本玻璃系统的电模量显示出 M' 的不对称峰,这反映了非德拜型弛豫。当 x ≤ 0.5 mol% 时,Tg 表现出非线性增加,然后在 x > 0.5 mol% 时出现大幅增加。发现低频区域的传导机制为逆 – 重叠大极化子隧道(逆 – OLPT),x ≤ 0.5 mol%,而该机制转化为 x = 0.7 mol% 的 OLPT 模型。本玻璃系统的电模量显示出 M' 的不对称峰,这反映了非德拜型弛豫。
更新日期:2020-09-01
down
wechat
bug