当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low cycle fatigue behavior of magnesium matrix nanocomposite at ambient and elevated temperatures
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2020-07-08 , DOI: 10.1016/j.msea.2020.139890
A.H. Jabbari , A. Shafiee Sabet , M. Sedighi , H. Jahed , C. Sommitsch

AZ31B alloy reinforced by 1.5 vol.% nano-sized Al2O3 particles has been subjected to fully-reversed strain-controlled uniaxial tension-compression cyclic loading at room temperature, 100 °C, and 200 °C. A combination of mechanical and magnetic stir casting methods followed by a hot-extrusion process was used to fabricate the composite material. Cyclic and fatigue behaviors of the composite were studied at the strain ranges of 0.8%–2.5%. The experimental results of the fatigue lives were used to assess and compare the life prediction capabilities of different existing strain-based and energy-based fatigue models. The results exhibited that the presence of the nano-sized reinforcing particles leads to a homogenously fine microstructure and slightly changes the texture of the composite extrusion, compared to the typical microstructure and texture of monolithic AZ31B extrusion. The cyclic behavior of the composite is altered from an asymmetric shape at room temperature to a symmetric one at 200 °C, resulting in reduction of mean stress. Unlike the room-temperature behavior, twinning and detwinning are not governing plastic deformation mechanisms at the elevated temperatures, especially at 200 °C. Cyclic softening occurs by increasing the temperature, in a manner similar to the monotonic tensile tests. Due to the strain-controlled loading and increasing the composite ductility at the elevated temperatures, the fatigue lives are comparable at the different temperatures. Finally, considering the results at all the temperatures, Jahed-Varvani (JV) as an energy-based model shows a more promising life prediction.



中文翻译:

镁基纳米复合材料在环境和高温下的低循环疲劳行为

1.5%(体积)纳米Al 2 O 3增强的AZ31B合金颗粒在室温,100°C和200°C下经受了完全反向的应变控制的单轴拉伸压缩循环载荷。机械和磁力搅拌铸造方法的组合,然后进行热挤压工艺,以制造复合材料。研究了复合材料在0.8%–2.5%应变范围内的循环和疲劳行为。疲劳寿命的实验结果用于评估和比较现有的不同基于应变和基于能量的疲劳模型的寿命预测能力。结果表明,与整体式AZ31B挤出的典型微观结构和织构相比,纳米级增强颗粒的存在导致均一的精细微观结构,并稍微改变了复合材料挤出的织构。复合材料的循环行为从室温下的不对称形状更改为200°C下的对称形状,从而降低了平均应力。与室温行为不同,孪生和解缠在高温下(尤其是在200°C下)并不能控制塑性变形机制。循环软化是通过升高温度来进行的,类似于单调拉伸试验。由于在升高的温度下通过应变控制的载荷并提高了复合材料的延展性,因此疲劳寿命在不同温度下具有可比性。最后,考虑到所有温度下的结果,基于能量的模型Jahed-Varvani(JV)显示了更有希望的寿命预测。导致平均压力降低。与室温行为不同,孪生和解缠在高温下(尤其是在200°C下)并不能控制塑性变形机制。通过类似于单调拉伸试验的方式,通过升高温度来进行循环软化。由于在升高的温度下通过应变控制的载荷并增加了复合材料的延展性,因此疲劳寿命在不同温度下具有可比性。最后,考虑到所有温度下的结果,基于能量的模型Jahed-Varvani(JV)显示了更有希望的寿命预测。导致平均压力降低。与室温行为不同,孪生和解缠在高温下(尤其是在200°C下)并不能控制塑性变形机制。循环软化是通过升高温度来进行的,类似于单调拉伸试验。由于在升高的温度下通过应变控制的载荷并提高了复合材料的延展性,因此疲劳寿命在不同温度下具有可比性。最后,考虑到所有温度下的结果,基于能量的模型Jahed-Varvani(JV)显示了更有希望的寿命预测。以类似于单调拉伸试验的方式。由于在升高的温度下通过应变控制的载荷并提高了复合材料的延展性,因此疲劳寿命在不同温度下具有可比性。最后,考虑到所有温度下的结果,基于能量的模型Jahed-Varvani(JV)显示了更有希望的寿命预测。以类似于单调拉伸试验的方式。由于在升高的温度下通过应变控制的载荷并提高了复合材料的延展性,因此疲劳寿命在不同温度下具有可比性。最后,考虑到所有温度下的结果,基于能量的模型Jahed-Varvani(JV)显示了更有希望的寿命预测。

更新日期:2020-07-10
down
wechat
bug