当前位置: X-MOL 学术Geomorphology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morphometry of glaciovolcanic edifices from Iceland: Types and evolution
Geomorphology ( IF 3.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.geomorph.2020.107334
Gro B.M. Pedersen , Pablo Grosse , Magnús T. Gudmundsson

Abstract The morphology of many glaciovolcanoes is considered one of the distinctive characteristics of their ice-confining eruption environment. However, a thorough morphometric analysis of a large number of glaciovolcanic edifices has never been performed. Based on a semi-automatic, geomorphometric mapping of glaciovolcanic edifices of the Icelandic neovolcanic zones, we present a morphometric database of 155 glaciovolcanic edifices formed during the last 0.78 Ma. This database enables a comprehensive analysis of the morphometric diversity of a large suite of glaciovolcanic edifices. Sheet-like formations, however, are not considered due to lack of data. Using three planimetric measurements (basal length, average basal width and average summit plateau width) and their ratios, three main morphometric groups can be distinguished in a ternary diagram: 1) conical edifices with no or small summit plateaus, 2) linear ridges and 3) flat-topped edifices (subdivided into equidimensional and elongated). All three groups contain edifices with and without lava caps. These morphometric groups can be fitted to the commonly accepted terminology for cone/mound, tindar and tuya. However, since lava caps occur in all morphometric groups, a grouping based on its existence is not practical. This suggests that by adding the descriptor “lava-capped” to any of the three classes may be a useful way to refine the classification. Based on the ternary diagram ridges are the most morphometrically distinct glaciovolcanic edifice, because of their very extreme elongation, followed by flat-topped edifices and finally conical edifices. However, morphometric parameters cannot be used singlehanded to identify glaciovolcanic edifices from other types of volcanic edifices such as composite volcanoes, shields or submarine volcanoes, and should always be complemented with other observations. The glaciovolcanic edifice volumes range from 0.15 · 10−2km3 to 32 km3. Conical edifices are the smallest ( 1 km3).Overall, with growth three morphological evolutions can be considered: (A) an initial eruptive fissure concentrates into one vent generating an equidimensional edifice, that either can be a conical or a flat-topped edifice; (B) the edifice maintains its elongation, suggesting that a fissure is the dominating vent structure, and during continued eruption develops significant summit plateaus, generating elongated flat-topped edifices; and (C) the edifice increases in elongation because the fissure lengthens during the eruption, and a plateau-building stage does not occur, producing increasingly elongated ridges.

中文翻译:

冰岛冰川火山建筑物的形态测量:类型和演化

摘要 许多冰川火山的形态被认为是其冰封喷发环境的显着特征之一。然而,从未对大量冰川火山建筑物进行过彻底的形态测量分析。基于冰岛新火山区冰川火山建筑物的半自动地貌测量映射,我们提供了一个包含在过去 0.78 Ma 期间形成的 155 座冰川火山建筑物的形态测量数据库。该数据库能够对大量冰川火山建筑物的形态多样性进行综合分析。然而,由于缺乏数据,不考虑片状地层。使用三种平面测量值(基础长度、平均基础宽度和平均峰顶高原宽度)及其比率,在三元图中可以区分三个主要的形态测量组:1) 没有或小的山顶高原的圆锥形建筑物,2) 线性脊和 3) 平顶建筑物(细分为等维和细长)。所有三个组都包含有和没有熔岩帽的建筑物。这些形态测量组可以适用于锥/丘、tindar 和 tuya 的普遍接受的术语。然而,由于熔岩盖出现在所有形态测量组中,基于其存在的分组是不切实际的。这表明将描述符“熔岩封顶”添加到三个类别中的任何一个可能是细化分类的有用方法。根据三元图,山脊是形态计量学上最独特的冰川火山建筑,因为它们的伸长非常大,其次是平顶建筑,最后是圆锥形建筑。然而,形态测量参数不能单独用于从其他类型的火山结构(例如复合火山、盾构或海底火山)中识别冰川火山结构,并且应始终与其他观测结果相辅相成。冰川火山建筑物的体积从 0.15·10−2km3 到 32km3 不等。圆锥形建筑物最小(1 km3)。总体而言,随着生长,可以考虑三种形态演变:(A)最初的喷发裂缝集中在一个喷口中,产生一个等维的建筑物,可以是圆锥形或平顶的建筑物;(B) 建筑物保持其伸长,这表明裂缝是主要的喷口结构,在持续喷发期间形成显着的顶峰高原,产生细长的平顶建筑物;
更新日期:2020-12-01
down
wechat
bug