当前位置: X-MOL 学术Rare Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure and corrosion properties of Mg–0.5Zn–0.2Ca–0.2Ce alloy with different processing conditions
Rare Metals ( IF 8.8 ) Pub Date : 2020-07-08 , DOI: 10.1007/s12598-020-01478-2
Cheng Zhang , Liang Wu , Guang-Sheng Huang , Guan-Gang Wang , Bin Jiang , Fu-Sheng Pan

The microstructure and corrosion resistance of Mg–0.5Zn–0.2Ca–0.2Ce alloy with different processing conditions were investigated. The composition was detected by X-ray fluorescence (XRF), and the microstructure was analyzed by optical microscopy (OM) and scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy (EDS). The corrosion behavior was investigated by hydrogen evolution tests, weight loss tests and electrochemical measurements. The Mg–0.5Zn–0.2Ca–0.2Ce alloy has much better corrosion resistance compared with the commercial AZ31 sheet, which can be attributed to its dispersive second phases and protective corrosion products film on the alloy surface. Moreover, the as-rolled Mg–0.5Zn–0.2Ca–0.2Ce alloy shows much better corrosion resistance compared with the as-extruded Mg–0.5Zn–0.2Ca–0.2Ce alloy. This can be due to three aspects: The as-rolled alloy has smaller grain size; the as-rolled alloy has lower (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}0)/(112¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{2}}$$\end{document}0) texture intensity; the residual stress of the as-rolled alloy is eliminated during the annealing process, but large residual stress exists in the as-extruded alloy produced by the extrusion process.

中文翻译:

不同加工条件下Mg-0.5Zn-0.2Ca-0.2Ce合金的组织和腐蚀性能

研究了不同加工条件下Mg-0.5Zn-0.2Ca-0.2Ce合金的显微组织和耐腐蚀性能。通过 X 射线荧光 (XRF) 检测成分,并通过配备能量色散光谱 (EDS) 的光学显微镜 (OM) 和扫描电子显微镜 (SEM) 分析微观结构。通过析氢试验、失重试验和电化学测量研究腐蚀行为。与商用 AZ31 板材相比,Mg-0.5Zn-0.2Ca-0.2Ce 合金具有更好的耐腐蚀性能,这可归因于其弥散的第二相和合金表面的保护性腐蚀产物膜。此外,与挤压态 Mg-0.5Zn-0.2Ca-0.2Ce 合金相比,轧制态 Mg-0.5Zn-0.2Ca-0.2Ce 合金显示出更好的耐腐蚀性。这可能是由于三个方面的原因: 轧制态合金的晶粒尺寸较小;轧制后的合金具有较低的 (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage {upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}0)/(112¯\documentclass[12pt]{minimal} \usepackage {amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bar{2}}$$\end{document}0) 纹理强度;在退火过程中消除了轧制态合金的残余应力,但在挤压过程中产生的挤压态合金中存在较大的残余应力。轧制后的合金晶粒较小;轧制后的合金具有较低的 (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage {upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}0)/(112¯\documentclass[12pt]{minimal} \usepackage {amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bar{2}}$$\end{document}0) 纹理强度;在退火过程中消除了轧制态合金的残余应力,但在挤压过程中产生的挤压态合金中存在较大的残余应力。轧制后的合金晶粒较小;轧制后的合金具有较低的 (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage {upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}0)/(112¯\documentclass[12pt]{minimal} \usepackage {amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bar{2}}$$\end{document}0) 纹理强度;在退火过程中消除了轧制态合金的残余应力,但在挤压过程中产生的挤压态合金中存在较大的残余应力。轧制合金的 (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage {upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}0)/(112¯\documentclass[12pt]{minimal} \usepackage {amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bar{2}}$$\end{document}0) 纹理强度;在退火过程中消除了轧制态合金的残余应力,但在挤压过程中产生的挤压态合金中存在较大的残余应力。轧制后的合金具有较低的 (101¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage {upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{1}}$$\end{document}0)/(112¯\documentclass[12pt]{minimal} \usepackage {amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bar{2}}$$\end{document}0) 纹理强度;在退火过程中消除了轧制态合金的残余应力,但在挤压过程中产生的挤压态合金中存在较大的残余应力。
更新日期:2020-07-08
down
wechat
bug