当前位置: X-MOL 学术Inverse Probl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A joint reconstruction and lambda tomography regularization technique for energy-resolved X-ray imaging
Inverse Problems ( IF 2.1 ) Pub Date : 2020-07-01 , DOI: 10.1088/1361-6420/ab8f82
James W Webber 1 , Eric Todd Quinto 2 , Eric L Miller 1
Affiliation  

Here we present new joint reconstruction and regularization techniques inspired by ideas in microlocal analysis and lambda tomography, for the simultaneous reconstruction of the attenuation coefficient and electron density from X-ray transmission (i.e., X-ray CT) and backscattered data (assumed to be primarily Compton scattered). To demonstrate our theory and reconstruction methods, we consider the "parallel line segment" acquisition geometry of Webber and Miller ("Compton scattering tomography in translational geometries." Inverse Problems 36, no. 2 (2020): 025007), which is motivated by system architectures currently under development for airport security screening. We first present a novel microlocal analysis of the parallel line geometry which explains the nature of image artefacts when the attenuation coefficient and electron density are reconstructed separately. We next introduce a new joint reconstruction scheme for low effective $Z$ (atomic number) imaging ($Z<20$) characterized by a regularization strategy whose structure is derived from lambda tomography principles and motivated directly by the microlocal analytic results. Finally we show the effectiveness of our method in combating noise and image artefacts on simulated phantoms.

中文翻译:

用于能量分辨 X 射线成像的联合重建和 lambda 断层扫描正则化技术

在这里,我们提出了受微局部分析和 lambda 断层扫描思想启发的新联合重建和正则化技术,用于从 X 射线传输(即 X 射线 CT)和反向散射数据(假设为主要是康普顿散布)。为了演示我们的理论和重建方法,我们考虑了 Webber 和 Miller 的“平行线段”采集几何(“平移几何中的康普顿散射断层扫描。”逆问题 36,第 2 期(2020):025007),其动机是目前正在开发的机场安检系统架构。我们首先提出了一种新的平行线几何微局部分析,它解释了当衰减系数和电子密度分别重建时图像伪影的性质。我们接下来介绍了一种新的联合重建方案,用于低效 $Z$(原子序数)成像($Z<20$),其特征是正则化策略,其结构源自 lambda 断层扫描原理并直接受微局部分析结果驱动。最后,我们展示了我们的方法在对抗模拟体模上的噪声和图像伪影方面的有效性。20$) 以正则化策略为特征,其结构源自 lambda 断层扫描原理,并直接由微局部分析结果驱动。最后,我们展示了我们的方法在对抗模拟体模上的噪声和图像伪影方面的有效性。20$) 以正则化策略为特征,其结构源自 lambda 断层扫描原理,并直接由微局部分析结果驱动。最后,我们展示了我们的方法在对抗模拟体模上的噪声和图像伪影方面的有效性。
更新日期:2020-07-01
down
wechat
bug