当前位置: X-MOL 学术Wave. Random Complex Media › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear generalized thermoelasticity of FGM finite domain based on Lord–Shulman theory
Waves in Random and Complex Media ( IF 4.051 ) Pub Date : 2020-07-07 , DOI: 10.1080/17455030.2020.1788746
P. Karimi Zeverdejani 1 , Y. Kiani 2
Affiliation  

Current investigation deals with the nonlinear generalized thermoelasticity of a functionally graded material (FGM) layer. It is assumed that the elasticity modulus, thermal conductivity, thermal expansion coefficient, mass density and specific heat capacity follow the exponential type of property distribution while the thermal relaxation time is assumed to be constant for the FGM layer. The governing motion and energy equations for the layer are obtained under the assumptions of Lord and Shulman with a single relaxation time. The energy equation is kept in its nonlinear form and the assumption made in the previous investigations to linearize the energy equation is not performed in the current research. Two coupled equations are presented in a dimensionless presentation and solved by means of the generalized differential quadrature and Newmark time marching method. Numerical results of this study are validated for the case of homogeneous layer. After that, novel numerical results are provided to investigate the response of a layer subjected to thermal shock. As expected, the exponential index of the FGM layer, boundary conditions, coupling parameter, relaxation time and nonlinearity are all major factors on the response of the thermally affected layer. It is verified that under thermally nonlinear analysis the magnitudes of stress and displacement are underestimated. Also, temperature and displacement enhance as the exponential index of the FGM layer increases.



中文翻译:

基于Lord-Shulman理论的FGM有限域非线性广义热弹性

目前的研究涉及功能梯度材料 (FGM) 层的非线性广义热弹性。假设弹性模量、热导率、热膨胀系数、质量密度和比热容遵循指数类型的特性分布,而 FGM 层的热弛豫时间假设为常数。该层的控制运动和能量方程是在 Lord 和 Shulman 的假设下获得的,具有单个弛豫时间。能量方程保持其非线性形式,并且在先前的研究中对能量方程进行线性化的假设在当前的研究中没有进行。两个耦合方程以无量纲形式呈现,并通过广义微分求积法和纽马克时间推进法求解。本研究的数值结果在均质层的情况下得到验证。之后,提供了新的数值结果来研究受热冲击的层的响应。正如预期的那样,FGM 层的指数指数、边界条件、耦合参数、弛豫时间和非线性都是影响热影响层响应的主要因素。经证实,在热非线性分析下,应力和位移的大小被低估了。此外,随着 FGM 层的指数指数增加,温度和位移也会增加。本研究的数值结果在均质层的情况下得到验证。之后,提供了新的数值结果来研究受热冲击的层的响应。正如预期的那样,FGM 层的指数指数、边界条件、耦合参数、弛豫时间和非线性都是影响热影响层响应的主要因素。经证实,在热非线性分析下,应力和位移的大小被低估了。此外,随着 FGM 层的指数指数增加,温度和位移也会增加。本研究的数值结果在均质层的情况下得到验证。之后,提供了新的数值结果来研究受热冲击的层的响应。正如预期的那样,FGM 层的指数指数、边界条件、耦合参数、弛豫时间和非线性都是影响热影响层响应的主要因素。经证实,在热非线性分析下,应力和位移的大小被低估了。此外,随着 FGM 层的指数指数增加,温度和位移也会增加。弛豫时间和非线性都是影响热影响层响应的主要因素。经证实,在热非线性分析下,应力和位移的大小被低估了。此外,随着 FGM 层的指数指数增加,温度和位移也会增加。弛豫时间和非线性都是影响热影响层响应的主要因素。经证实,在热非线性分析下,应力和位移的大小被低估了。此外,随着 FGM 层的指数指数增加,温度和位移也会增加。

更新日期:2020-07-07
down
wechat
bug