当前位置: X-MOL 学术Journal of Theoretical and Applied Mechanics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Crack Modeling and Analytical Stress Field Analysis in Single-Crystal Silicon Using Quantitative Fractography
Theoretical and Applied Fracture Mechanics ( IF 5.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.tafmec.2020.102693
Anthony Moulins , Lingyue Ma , Roberto Dugnani , Ricardo J. Zednik

Abstract Single-crystal silicon is the fundamental building block enabling today’s plethora of integrated electronic components. However, complex mechanical stresses, originating from either direct mechanical loading or thermal cycling, can result in fracture of the constituent silicon, one of the leading causes of semiconductor device failure. Although phenomenological relationships to estimate the fracture strength in silicon have been proposed in the past, no quantitative fractographic method addressing the intrinsic anisotropy of crystals exists. In this work, a fractographic approach using optical confocal microscopy and atomic force microscopy is developed to identify and analyze the cleavage planes associated with dynamic instabilities in single-crystal silicon. We analytically determined the dynamic crack propagation behavior and asymptotic stress field at the crack-tip for unstable, anisotropic, circular cracks in silicon. The fractographic features predicted by the analytical model are consistent with experimental observations, and correctly predict how the {1 1 1} planes define the fractographic mirror region (including mirror constant), as well as the {1 1 2} planes associated with fractographic Wallner lines. These findings have important consequences in reducing mechanical and thermomechanical failure in semiconductor devices, where the mechanical strength is highly dependent on crystallographic anisotropy.

中文翻译:

使用定量断层法对单晶硅进行动态裂纹建模和应力场分析

摘要 单晶硅是支持当今大量集成电子元件的基本构建块。然而,源自直接机械载荷或热循环的复杂机械应力会导致硅的断裂,这是半导体器件故障的主要原因之一。尽管过去已经提出了估计硅断裂强度的现象学关系,但不存在解决晶体固有各向异性的定量断口方法。在这项工作中,开发了一种使用光学共焦显微镜和原子力显微镜的断口方法来识别和分析与单晶硅中的动态不稳定性相关的解理面。我们通过分析确定了硅中不稳定的各向异性圆形裂纹的动态裂纹扩展行为和裂纹尖端的渐近应力场。解析模型预测的断面特征与实验观察一致,正确预测了{1 1 1}面如何定义断面镜面区域(包括镜面常数),以及与断面Wallner相关的{1 1 2}面线。这些发现对减少半导体器件中的机械和热机械故障具有重要意义,其中机械强度高度依赖于晶体各向异性。并正确预测 {1 1 1} 平面如何定义分形镜面区域(包括镜面常数),以及与分形 Wallner 线相关的 {1 1 2} 平面。这些发现对减少半导体器件中的机械和热机械故障具有重要意义,其中机械强度高度依赖于晶体各向异性。并正确预测 {1 1 1} 平面如何定义分形镜面区域(包括镜面常数),以及与分形 Wallner 线相关的 {1 1 2} 平面。这些发现对减少半导体器件中的机械和热机械故障具有重要意义,其中机械强度高度依赖于晶体各向异性。
更新日期:2020-10-01
down
wechat
bug