当前位置: X-MOL 学术Surf. Coat. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of electro spun microtube array membrane for anode application in the microbial fuel cell
Surface & Coatings Technology ( IF 5.4 ) Pub Date : 2020-07-07 , DOI: 10.1016/j.surfcoat.2020.126171
Yongqiang Wen , Hua-Hsuan Chuang , Chien-Chung Chen , Yung-Chin Yang

Microbial fuel cell (MFC) is a novel technique can solve the waste water problem and generate electricity. This study focuses on the anode material by using co-axial electrospinning method to fabricate polylactic acid (PLLA) microtube array membrane (PLLA MTAM). These MTAM not only have high specific area but also enhance the microbial adhesion ability. The addictive, multi-walled carbon nanotubes (MWCNT), increase the conductivity that can improve the efficiency of MFC. Furthermore, the effects of different numbers of electro spun fiber membrane placed in the anode of dual-chamber MFC on electrical performances are analyzed. The scanning electron microscopy (SEM) images show that MTAM have thin walls and contain pores on its surface which is beneficial for fast mass transport. During acclimation, bacteria regularly accumulate on the surface and formed a lamellar structure. However the bacteria in the inner structure tend to group into individual block. The growth of biofilm obviously affected the electrical performance of the cell. In the acclimation process, more electro spun fiber membranes in the anode raise voltage rapidly due to better electron transfer ability. The use of MTAM as the anode in MFC is beneficial for attaching bacteria in shorter acclimation time. The MFC of 11 MTAMs has a maximum power density of 2.94 mW/m2 and a minimum resistance of 833 Ω. Compared to sealing MTAM, hollow MTAM demonstrate better electrical performance.



中文翻译:

用于微生物燃料电池阳极的电纺微管阵列膜的开发

微生物燃料电池(MFC)是一种可以解决废水问题并产生电能的新技术。这项研究的重点是通过使用同轴电纺丝方法制造聚乳酸(PLLA)微管阵列膜(PLLA MTAM)的阳极材料。这些MTAM不仅具有高的比表面积,而且还增强了微生物的粘附能力。令人上瘾的多壁碳纳米管(MWCNT)可提高电导率,从而提高MFC的效率。此外,分析了放置在双室MFC阳极中的不同数量的电纺纤维膜对电性能的影响。扫描电子显微镜(SEM)图像显示,MTAM的壁薄且表面上有孔,这有利于快速传质。在适应过程中,细菌定期在表面积聚并形成层状结构。但是,内部结构中的细菌倾向于分组为单个块。生物膜的生长明显影响细胞的电性能。在适应过程中,由于更好的电子传递能力,阳极中更多的电纺纤维膜会迅速提高电压。将MTAM用作MFC中的阳极有利于在较短的适应时间内附着细菌。11个MTAM的MFC的最大功率密度为2.94 mW / m 由于更好的电子传递能力,阳极中更多的电纺纤维膜会迅速提高电压。将MTAM用作MFC中的阳极有利于在较短的适应时间内附着细菌。11个MTAM的MFC的最大功率密度为2.94 mW / m 由于更好的电子传递能力,阳极中更多的电纺纤维膜会迅速提高电压。将MTAM用作MFC中的阳极有利于在较短的适应时间内附着细菌。11个MTAM的MFC的最大功率密度为2.94 mW / m2和最小电阻833Ω。与密封MTAM相比,空心MTAM具有更好的电气性能。

更新日期:2020-07-07
down
wechat
bug