当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development and validation of osteoligamentous lumbar spine under complex loading conditions: A step towards patient-specific modeling.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2020-07-06 , DOI: 10.1016/j.jmbbm.2020.103898
Sagar Umale 1 , Narayan Yoganandan 2 , Shekar N Kurpad 2
Affiliation  

Finite-element models are used to investigate the biomechanics of normal, diseased and surgically fused spines. Generally, nominal spine geometries are used to understand the biomechanics, which has created a need for a technique that develops patient-specific lumbar spine geometries. In the current study, a lumbar spine (T12-Sacrum) was developed using a technique that facilitates geometrical morphing, which assists in incorporating patient-specific morphologies into the model. The model evaluations can be used to propose a biomechanically suitable lumbar spine fusion procedure for patients. This study focuses on the validation of the base model under pure-moment, pure-compression and combined-compression-and-moment loadings. Experimental data from the literature were used to validate the response of the model. The L1-L2, L2-L3, L3-L4, L4-L5 and L5-sacrum segments demonstrated a range of motion of 4.5, 4.0, 5.4, 5.0 and 8.9° in flexion; 3.0, 2.5, 3.6, 3.1 and 5.2° in extension; 6.2, 5.8, 6.4, 5.0 and 6.1° in right and left lateral bending; and 2.9, 3.0, 2.9, 1.9 and 2.5° in right and left axial rotation, all under 10 Nm pure-moment loading. The L1-L2, L2-L3, L3-L4, L4-L5 and L5-sacrum discs demonstrated compressions of 1.1, 1.4, 1.6, 1.4 and 0.9 mm under 1200 N follower- or pure-compression loading. With the combined loading of 280 N follower and 7.5 Nm moment, the L1-L5 model demonstrated 11.7, 7.2, 18.3 and 10.4 degrees of range of motion in flexion, extension, bending and rotation, respectively. The model results were in good agreement with corridors from six different experimental studies and can be used for future clinical studies.



中文翻译:

在复杂的负荷条件下开发和验证骨韧带性腰椎:迈向患者特定模型的一步。

有限元模型用于研究正常,患病和手术融合的脊柱的生物力学。通常,使用标称的脊柱几何形状来了解生物力学,这就需要一种开发特定于患者的腰椎几何形状的技术。在当前的研究中,腰椎(T12-S骨)是使用有助于几何变形的技术开发的,该技术有助于将患者特定的形态纳入模型。模型评估可用于为患者提出生物力学上合适的腰椎融合程序。这项研究的重点是在纯矩,纯压缩和组合压缩与矩荷载下对基本模型的验证。来自文献的实验数据用于验证模型的响应。L1-L2,L2-L3,L3-L4,L4-L5和L5-s骨节段的屈曲范围分别为4.5、4.0、5.4、5.0和8.9°。延伸3.0、2.5、3.6、3.1和5.2°; 左右横向弯曲分别为6.2、5.8、6.4、5.0和6.1°;分别在10 Nm的纯力矩载荷下,左右轴向旋转2.9、3.0、2.9、1.9和1.9°。L1-L2,L2-L3,L3-L4,L4-L5和L5-s骨椎间盘在1200 N随动载荷或纯压缩载荷下表现出1.1、1.4、1.6、1.4和0.9mm的压缩率。在280 N随动件和7.5 Nm力矩的组合载荷下,L1-L5模型在屈曲,伸展,弯曲和旋转时分别表现出11.7、7.2、18.3和10.4度的运动范围。模型结果与来自六个不同实验研究的走廊非常吻合,可用于将来的临床研究。

更新日期:2020-07-06
down
wechat
bug