当前位置: X-MOL 学术Bioorgan. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design, synthesis and SARs of novel telomerase inhibitors based on BIBR1532.
Bioorganic Chemistry ( IF 5.1 ) Pub Date : 2020-07-07 , DOI: 10.1016/j.bioorg.2020.104077
Chao Liu 1 , Hua Zhou 2 , Xiao Bao Sheng 3 , Xin Hua Liu 4 , Fei Hu Chen 2
Affiliation  

Telomerase has become one of the new popular targets for the development of anti-tumor drugs. Based on the structural characteristics of the BIBR1532 which has entered the stage of clinical research, six series total of 64 new compounds with diverse structural characteristics were designed and synthesized. The inhibitory activity against SGC-7901, MGC-803, SMMC-7721, A375 and GES cell lines and their telomerase inhibitory activity were tested. Among them, eight compounds showed good activity against cancer cells, among them compounds 56, 57 and 59 also showed low toxicity. Some of them showed excellent telomerase inhibitory activity with IC50 values ranging from 0.62 μM to 8.87 μM. Based on above, in depth structure-activity relationships were summarized, the compounds by replacing methyl group with cyanide and retaining amide moiety had good anti-tumor activity, moderate cytotoxicity, and better telomerase inhibitory activity. The results should be used for reference in BIBR1532-based structural optimization for further development of small molecule telomerase inhibitors.



中文翻译:

基于BIBR1532的新型端粒酶抑制剂的设计,合成和SAR。

端粒酶已成为开发抗肿瘤药物的新的流行靶标之一。根据已进入临床研究阶段的BIBR1532的结构特征,设计并合成了6个系列的64种具有不同结构特征的新化合物。测试了对SGC-7901,MGC-803,SMMC-7721,A375和GES细胞系的抑制活性及其端粒酶抑制活性。其中,8个化合物显示良好的活性针对癌细胞,其中化合物565759还显示出低毒性。其中一些对IC 50表现出优异的端粒酶抑制活性值范围从0.62μM到8.87μM。据此,在深度构效关系上进行了总结,用氰化物取代甲基并保留酰胺部分的化合物具有良好的抗肿瘤活性,中等的细胞毒性和较好的端粒酶抑制活性。该结果应在基于BIBR1532的结构优化中用作进一步开发小分子端粒酶抑制剂的参考。

更新日期:2020-07-15
down
wechat
bug