当前位置: X-MOL 学术Eur. Phys. J. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sputtering of LiF and other halide crystals in the electronic energy loss regime
The European Physical Journal D ( IF 1.8 ) Pub Date : 2020-07-07 , DOI: 10.1140/epjd/e2020-10040-9
Marcel Toulemonde , Walter Assmann , Brigitte Ban-d’Etat , Markus Bender , Andreas Bergmaier , Philippe Boduch , Serge Della Negra , Jinglai Duan , Aymann S. El-Said , Florian Grüner , Jie Liu , Daniel Lelièvre , Hermann Rothard , Tim Seidl , Daniel Severin , Jean Paul Stoquert , Kay-Obe Voss , Christina Trautmann

Abstract

Sputtering experiments were performed by irradiating LiF, NaCl, and RbCl crystals with various swift heavy ions like S, Ni, I, Au with energies between 60 and 210 MeV, C60 clusters between 12 and 30 MeV or Pb ions between 730 and 6040 MeV. Sputtered species are collected on arc-shaped catchers and subsequently analyzed by elastic recoil detection analysis or Rutherford backscattering analysis. The study focuses on angular distributions and total yields for LiF and covers a broad range of experimental parameters including cleaved or rough sample surfaces, ion fluence, beam incident angles, and different ion velocities leading to electronic energy loss (Se) values from 5 to 45 keV/nm. In most cases, the angular distribution has two components, a jet-like peak perpendicular to the surface sample superimposed on a broad isotropic cosine distribution whatever is the beam incident angle. The observation of the jet depends mainly on the surface flatness and angle of ion incidence. However, the jet does not appear clearly when irradiated with C60 cluster. The sputtering yield is stoichiometric and characterized by huge total yields of up to a few 105 atoms per incident ion. The yield follows a power law as function of electronic energy loss, Y follows an exponential law with Sen with n ~ 4. While the azimuthal symmetry for sputtering is observed at low ion velocity (~1 MeV/u), it seems to be lost at high velocity (>4 MeV/u). The data provide a comprehensive overview how the angular distribution and the total sputtering yield scale with the energy loss, beam incidence angle and ion velocity. Complementary experiments have been done with NaCl and RbCl targets confirming the observation made for LiF.

Graphical abstract



中文翻译:

在电子能量损失状态下溅射LiF和其他卤化物晶体

摘要

通过向LiF,NaCl和RbCl晶体照射各种快速重离子(例如S,Ni,I,Au,能量在60和210 MeV之间,C 60簇在12和30 MeV之间,或Pb离子在730和6040 MeV之间)进行溅射实验。。溅射的物质收集在弧形捕集器上,然后通过弹性反冲检测分析或卢瑟福反向散射分析进行分析。这项研究着眼于LiF的角度分布和总产率,涵盖了广泛的实验参数,包括劈裂或粗糙的样品表面,离子通量,电子束入射角以及导致电子能量损失的不同离子速度(S e)值从5到45 keV / nm。在大多数情况下,角度分布有两个分量:垂直于表面样本的喷射状峰,叠加在宽的各向同性余弦分布上,而与光束的入射角无关。射流的观察主要取决于表面平整度和离子入射角。但是,当用C 60团簇照射时,射流不会清晰地出现。溅射产率是化学计量的,其特征在于每个入射离子具有高达10 5个原子的巨大总产率。产量遵循幂定律作为电子能量损失的函数,Y遵循指数律,其中S e nn 〜4.虽然在低离子速度(〜1 MeV / u)时观察到溅射的方位角对称性,但似乎在高速(> 4 MeV / u)时会丢失。数据提供了角度分布和总溅射产率如何随能量损失,射束入射角和离子速度变化的综合概述。用NaCl和RbCl靶进行了补充实验,证实了对LiF的观察。

图形概要

更新日期:2020-07-07
down
wechat
bug