当前位置: X-MOL 学术J. Manuf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical optimization of warm hydromechanical deep drawing process parameters and its experimental verification
Journal of Manufacturing Processes ( IF 6.2 ) Pub Date : 2020-07-06 , DOI: 10.1016/j.jmapro.2020.06.020
Mevlüt Türköz , Ömer Necati Cora , Hasan Gedikli , Murat Dilmeç , Hüseyin Selçuk Halkacı , Muammer Koç

Warm Hydromechanical Deep Drawing (WHDD) is considered as an effective sheet metal forming process to overcome low formability problems of lightweight materials, such as aluminum and magnesium alloys, at room temperature. WHDD process combines the advantages of Hydromechanical Deep Drawing (HDD) and Warm Deep Drawing (WDD) processes. In this study, interactive and combined effects of Pressure (P) and Blank Holder Force (BHF) variation on the formability of the AA 5754 aluminum alloy sheets in the WHDD process were investigated experimentally and numerically. Different from available studies, the optimal fluid pressure (P) and blank holder force (BHF) profiles, which were determined numerically using adaptive FEA integrated with fuzzy logic control algorithm (aFEA-FLCA), were validated experimentally for the first time in literature. Consequently, limiting drawing ratios (LDR) of AA5754 material were recorded as 2.5, 2.625, and 3.125 for HDD, WDD, and WHDD processes, respectively. Thus, it was demonstrated that the formability of lightweight materials, such as AA5754, could be increased significantly using the WHDD process through the proposed optimization method. This method was also implemented into the WHDD of an industrial part with complex geometry, successfully forming sharp features with minimal thinning at reduced levels of force, pressure, and time. Consequently, it is reasonably to state that the method developed in this study can be adopted for the manufacturing of any other part using the WHDD process.



中文翻译:

热力水力机械深冲工艺参数的数值优化及实验验证

暖水机械深冲(WHDD)被认为是一种有效的钣金成形工艺,可克服室温下轻质材料(如铝和镁合金)的低成形性问题。WHDD工艺结合了液压机械深拉伸(HDD)和热深拉伸(WDD)工艺的优点。在这项研究中,实验和数值研究了压力(P)和坯料夹持力(BHF)变化对WHDD过程中AA 5754铝合金板成形性的相互作用和联合影响。与现有研究不同,使用与模糊逻辑控制算法(aFEA-FLCA)集成的自适应FEA数值确定的最佳流体压力(P)和坯料夹持力(BHF)曲线在文献中首次得到实验验证。所以,对于HDD,WDD和WHDD工艺,AA5754材料的极限拉伸比(LDR)分别记录为2.5、2.625和3.125。因此,证明了通过建议的优化方法,使用WHDD工艺可以显着提高轻质材料(如AA5754)的可成形性。这种方法也已被应用到具有复杂几何形状的工业零件的WHDD中,成功地形成了锐利的特征,同时在减小的力,压力和时间水平下,减薄程度最小。因此,有理由指出,可以将本研究中开发的方法用于使用WHDD工艺制造任何其他零件。结果表明,通过建议的优化方法,使用WHDD工艺可以显着提高轻质材料(如AA5754)的可成形性。这种方法也已被应用到具有复杂几何形状的工业零件的WHDD中,成功地形成了锐利的特征,同时在减小的力,压力和时间水平下,减薄程度最小。因此,有理由指出,可以将本研究中开发的方法用于使用WHDD工艺制造任何其他零件。结果表明,通过建议的优化方法,使用WHDD工艺可以显着提高轻质材料(如AA5754)的可成形性。这种方法也已被应用到具有复杂几何形状的工业零件的WHDD中,成功地形成了锐利的特征,同时在减小的力,压力和时间的情况下最小化了薄型化。因此,有理由指出,可以将本研究中开发的方法用于使用WHDD工艺制造任何其他零件。压力和时间。因此,有理由指出,可以将本研究中开发的方法用于使用WHDD工艺制造任何其他零件。压力和时间。因此,有理由指出,可以将本研究中开发的方法用于使用WHDD工艺制造任何其他零件。

更新日期:2020-07-06
down
wechat
bug