当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wavelet neural networks based solutions for elliptic partial differential equations with improved butterfly optimization algorithm training
Applied Soft Computing ( IF 8.7 ) Pub Date : 2020-07-06 , DOI: 10.1016/j.asoc.2020.106518
Lee Sen Tan , Zarita Zainuddin , Pauline Ong

In this study, a machine learning approach based on the unsupervised version of wavelet neural networks (WNNs) is used to solve two-dimensional elliptic partial differential equations (PDEs). The design of the WNNs must be judiciously addressed, particularly, the adopted training algorithm, since it greatly influences the generalization performance and the convergence rate of WNNs. Although the gradient information of the commonly used gradient descent training algorithm in WNNs may direct the search to optimal weight solutions that minimize the error function, the learning process is slow due to the complex calculation of the partial derivatives. To date, on account of the derivative free characteristic and adaptability to respond to the complex dynamic changes of the interdependencies, numerous studies explored the potential benefit of integrating a meta-heuristic algorithm as the training algorithm of WNNs, where encouraging results are achieved. In this paper, an improved butterfly optimization algorithm (IBOA) is proposed and subsequently integrated into the training process of the WNNs. To evaluate the performance of the proposed IBOA training method, the obtained results are compared to the results of the momentum backpropagation (MBP), the particle swarm optimization (PSO) and the standard butterfly optimization algorithm (BOA) training methods. Statistical analyses of the results based on a sufficient number of independent runs validate the effectiveness of the proposed method in terms of accuracy, robustness and convergence.



中文翻译:

改进的蝶形优化算法训练的基于小波神经网络的椭圆型偏微分方程解

在这项研究中,基于小波神经网络(WNN)的无监督版本的机器学习方法用于求解二维椭圆偏微分方程(PDE)。必须谨慎处理WNN的设计,特别是采用的训练算法,因为它会极大地影响WNN的泛化性能和收敛速度。尽管WNN中常用的梯度下降训练算法的梯度信息可以将搜索引导到使误差函数最小的最佳权重解决方案,但是由于偏导数的计算复杂,因此学习过程很慢。迄今为止,由于无导数特征和对相互依存关系的复杂动态变化做出响应的适应性,大量研究探索了将元启发式算法集成为WNN的训练算法的潜在好处,并获得了令人鼓舞的结果。在本文中,提出了一种改进的蝴蝶优化算法(IBOA),并将其集成到WNN的训练过程中。为了评估所提出的IBOA训练方法的性能,将获得的结果与动量反向传播(MBP),粒子群优化(PSO)和标准蝴蝶优化算法(BOA)训练方法的结果进行比较。基于足够数量的独立运行对结果进行统计分析,从准确性,鲁棒性和收敛性方面验证了所提出方法的有效性。在取得令人鼓舞的结果的地方。在本文中,提出了一种改进的蝴蝶优化算法(IBOA),并将其集成到WNN的训练过程中。为了评估所提出的IBOA训练方法的性能,将获得的结果与动量反向传播(MBP),粒子群优化(PSO)和标准蝶形优化算法(BOA)训练方法的结果进行比较。基于足够数量的独立运行对结果进行统计分析,从准确性,鲁棒性和收敛性方面验证了所提出方法的有效性。在取得令人鼓舞的结果的地方。在本文中,提出了一种改进的蝴蝶优化算法(IBOA),并将其集成到WNN的训练过程中。为了评估所提出的IBOA训练方法的性能,将获得的结果与动量反向传播(MBP),粒子群优化(PSO)和标准蝴蝶优化算法(BOA)训练方法的结果进行比较。基于足够数量的独立运行对结果进行统计分析,从准确性,鲁棒性和收敛性方面验证了所提出方法的有效性。将获得的结果与动量反向传播(MBP),粒子群优化(PSO)和标准蝴蝶优化算法(BOA)训练方法的结果进行比较。基于足够数量的独立运行对结果进行统计分析,从准确性,鲁棒性和收敛性方面验证了所提出方法的有效性。将获得的结果与动量反向传播(MBP),粒子群优化(PSO)和标准蝶形优化算法(BOA)训练方法的结果进行比较。基于足够数量的独立运行对结果进行统计分析,从准确性,鲁棒性和收敛性方面验证了所提出方法的有效性。

更新日期:2020-07-06
down
wechat
bug