当前位置: X-MOL 学术Powder Metall. Met. Ceram. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Heat Treatment on the Structure and Phase Composition of the Nanosized Powder Based on a ZrO2 Solid Solution
Powder Metallurgy and Metal Ceramics ( IF 1 ) Pub Date : 2020-05-01 , DOI: 10.1007/s11106-020-00132-x
O.V. Dudnik , I.O. Marek , O.K. Ruban , V.P. Redko , M.I. Danilenko , S.A. Korniy , L.M. Melakh

The nanosized 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2 powder was produced by hydrothermal synthesis in an alkaline environment and heat-treated in the range 400–1300°C. The powder properties were examined by X-ray diffraction (XRD), SEM and TEM, petrography, and BET. According to the XRD data, a low-temperature metastable cubic ZrO2 (F-ZrO2) solid solution formed after hydrothermal synthesis. According to the petrography and electron microscopy data, TZrO2 began to form already in the hydrothermal synthesis process. The F-ZrO2 → T-ZrO2 phase transformation was completed in the range 700–850°C. Some T-ZrO2 particles were characterized by a twin substructure. The T-ZrO2 unit cell volume monotonically increased from 133.58 · 10–3 nm3 to 137.09 · 10–3 nm3 and the degree of tetragonality from 1.0033 to 1.0140. No M-ZrO2 was found to form. The powder specific surface area decreased from 94 to 2 m2/g in the heat treatment process. The sizes of primary powder particles (5–10 nm) remained almost unchanged in heat treatment up to 1150°C. The Vickers hardness of the ceramics produced from the powder treated at 850°C was 3.1 GPa and critical fracture toughness factor KIc was 8.4 MPa · m1/2. The preservation of the tetragonal structure (T-ZrO2), which is capable of the martensitic T-ZrO2 → M-ZrO2 transformation, and the strength characteristics determined open ways for microstructural design of smart materials, including shape memory ones, in the ZrO2–Y2O3–CeO2 system.

中文翻译:

热处理对ZrO2固溶体纳米粉体结构和相组成的影响

纳米尺寸的 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2 粉末是在碱性环境中通过水热合成制备的,并在 400–1300°C 范围内进行热处理。通过 X 射线衍射 (XRD)、SEM 和 TEM、岩相学和 BET 检测粉末特性。根据XRD数据,水热合成后形成了低温亚稳态立方ZrO2(F-ZrO2)固溶体。根据岩相学和电子显微镜数据,TZrO2 已经在水热合成过程中开始形成。F-ZrO2 → T-ZrO2 相变在 700-850°C 范围内完成。一些 T-ZrO2 颗粒的特征是双子结构。T-ZrO2 晶胞体积从 133.58·10-3 nm3 单调增加到 137.09·10-3 nm3,四方度从 1.0033 增加到 1.0140。没有发现 M-ZrO2 形成。在热处理过程中,粉末比表面积从 94 下降到 2 m2/g。在高达 1150°C 的热处理中,初级粉末颗粒的尺寸(5-10 nm)几乎保持不变。由在 850°C 处理的粉末生产的陶瓷的维氏硬度为 3.1 GPa,临界断裂韧性因子 KIc 为 8.4 MPa·m1/2。能够进行马氏体 T-ZrO2 → M-ZrO2 转变的四方结构 (T-ZrO2) 的保留以及强度特性决定了 ZrO2– 中智能材料(包括形状记忆材料)的微观结构设计的开放途径Y2O3-CeO2 系统。由在 850°C 处理的粉末生产的陶瓷的维氏硬度为 3.1 GPa,临界断裂韧性因子 KIc 为 8.4 MPa·m1/2。能够进行马氏体 T-ZrO2 → M-ZrO2 转变的四方结构 (T-ZrO2) 的保留以及强度特性决定了 ZrO2– 中智能材料(包括形状记忆材料)的微观结构设计的开放途径Y2O3-CeO2 系统。由在 850°C 处理的粉末生产的陶瓷的维氏硬度为 3.1 GPa,临界断裂韧性因子 KIc 为 8.4 MPa·m1/2。能够进行马氏体 T-ZrO2 → M-ZrO2 转变的四方结构 (T-ZrO2) 的保留以及强度特性决定了 ZrO2– 中智能材料(包括形状记忆材料)的微观结构设计的开放途径Y2O3-CeO2 系统。
更新日期:2020-05-01
down
wechat
bug