当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis of LEAP centrifuge tests on sloping liquefiable ground: Influence of dilatancy and post-liquefaction shear deformation
Soil Dynamics and Earthquake Engineering ( IF 4 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.soildyn.2020.106288
Ben He , Jian-Min Zhang , Wei Li , Rui Wang

Abstract The Liquefaction Experiments and Analysis Projects (LEAP) provides an international collaboration platform to assess key aspects related to seismic induced soil liquefaction. Within this scope, the current study investigates the influence of dilatancy and post-liquefaction shear strain on the seismic response of mildly sloping liquefiable ground, based on simulations of LEAP 2017–2019 centrifuge tests. A unified plasticity model for large post-liquefaction deformation, which has been implemented in the OpenSees finite element framework, is used in the numerical simulations. The model parameters are calibrated rigorously against element tests performed for Ottawa F65 sand used in LEAP 2017–2019, especially for liquefaction resistance and post-liquefaction shear strain observed in undrained cyclic hollow cylinder torsional shear tests. The calibrated model is used to simulate a series of centrifuge shaking table tests on sloping ground constructed at different soil densities. Good agreement between simulation and test results is achieved, validating the constitutive model and numerical simulation method. In depth analysis on the influence of dilatancy and post-liquefaction shear strain on the seismic response of the slope model is then conducted. The results show that these two factors can significantly affect the seismic acceleration, excess pore water pressure, and lateral displacement response of sloping ground, and therefore must be appropriately reflected in seismic liquefaction analysis oriented constitutive models.

中文翻译:

倾斜可液化地面LEAP离心试验数值分析:剪胀和液化后剪切变形的影响

摘要 液化实验和分析项目 (LEAP) 提供了一个国际合作平台来评估与地震引起的土壤液化相关的关键方面。在此范围内,目前的研究基于 LEAP 2017-2019 离心机试验的模拟,研究了剪胀和液化后剪应变对轻度倾斜可液化地面地震响应的影响。在 OpenSees 有限元框架中实现的大型液化后变形的统一塑性模型用于数值模拟。模型参数根据 LEAP 2017-2019 中使用的渥太华 F65 砂的元素测试进行了严格校准,特别是在不排水循环空心圆柱扭转剪切测试中观察到的液化阻力和液化后剪切应变。校准后的模型用于模拟在不同土壤密度下建造的倾斜地面上的一系列离心机振动台试验。仿真结果与试验结果吻合良好,验证了本构模型和数值模拟方法。然后对剪胀和液化后剪应变对边坡模型地震响应的影响进行了深入分析。结果表明,这两个因素会显着影响倾斜地面的地震加速度、超孔隙水压力和侧向位移响应,因此必须在面向地震液化分析的本构模型中适当反映。仿真结果与试验结果吻合良好,验证了本构模型和数值模拟方法。然后对剪胀和液化后剪应变对边坡模型地震响应的影响进行了深入分析。结果表明,这两个因素会显着影响倾斜地面的地震加速度、超孔隙水压力和侧向位移响应,因此必须在面向地震液化分析的本构模型中适当反映。仿真结果与试验结果吻合良好,验证了本构模型和数值模拟方法。然后对剪胀和液化后剪应变对边坡模型地震响应的影响进行了深入分析。结果表明,这两个因素会显着影响倾斜地面的地震加速度、超孔隙水压力和横向位移响应,因此必须在面向地震液化分析的本构模型中适当反映。
更新日期:2020-10-01
down
wechat
bug