当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries
Materials Today Energy ( IF 9.3 ) Pub Date : 2020-07-05 , DOI: 10.1016/j.mtener.2020.100475
J. Huang , X. Tang , K. Liu , G. Fang , Z. He , Z. Li

The major limitation of low-cost and high-safety aqueous Zn–MnO2 batteries for grid storage is largely hampered by their poor cyclic stability, which is usually caused by the manganese dissolution and interfacial kinetics. Herein, we demonstrated that an effective surface coating of MnO2 with an interfacial Mn–N bonding can effectively alleviate the manganese dissolution and facilitate the interfacial kinetics. As expected, the MnO2/polypyrrole electrode shows lower electrochemical polarization compared to the bare MnO2 and possesses no capacity fading at both low current density (50 cycles at 100 mA g−1) and high current density (500 cycles at 1000 mA g−1). The fundamental mechanism revealed in this work will contribute to establishing a rational strategy to further optimize the cycle life of the aqueous zinc-ion batteries.



中文翻译:

界面化学键合和改善的动力学特性有助于稳定的Zn-MnO 2水性电池

用于网格存储的低成本和高安全性的Zn-MnO 2水性电池的主要局限性是,其循环稳定性差,这通常是由于锰的溶解和界面动力学所致,因而受到很大的限制。在此,我们证明了具有Mn-N界面键的MnO 2的有效表面涂层可以有效地减轻锰的溶解并促进界面动力学。如预期的那样,与裸露的MnO 2相比,MnO 2 /聚吡咯电极显示出更低的电化学极化,并且在低电流密度(100 mA g -1的50个循环)和高电流密度(1000 mA g的500个循环)下均不具有容量衰减-1)。这项工作揭示的基本机制将有助于建立合理的策略,以进一步优化水性锌离子电池的循环寿命。

更新日期:2020-07-05
down
wechat
bug