当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exergoeconomic analysis of a novel trigeneration system containing supercritical CO2 Brayton cycle, organic Rankine cycle and absorption refrigeration cycle for gas turbine waste heat recovery
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.enconman.2020.113064
Shukun Wang , Chao Liu , Jie Li , Zhuang Sun , Xiaoxue Chen , Xiaonan Wang

Abstract Poly-generation system is gaining more attentions recently due to its advantages of the effective promotion on energy utilization efficiency and deceleration of environmental pollution, as well as the security and reliable improvement on power supply. In this study, a novel trigeneration system composed of a gas turbine cycle (GTC), a regenerative supercritical carbon dioxide (sCO2) Brayton cycle, an organic Rankine cycle (ORC), and an absorption refrigeration cycle (ARC), is proposed. The waste heat exhausted from the GTC is firstly absorbed by sCO2 cycle and then utilized by ORC to generate power. The bottoming ARC is driven by the remaining heat to provide cooling capacity, while the hot water is provided by an intercooler in the GTC. The thermodynamic and exergoeconomic analyses are conducted to investigate the trigeneration system performance. Comparative study is carried out to evaluate the effects of ORC with different working fluids on the whole system performance. Besides, the performances of the proposed system are optimized and compared from the first law, second law of thermodynamics, and exergoeconomic viewpoints. Results show that the trigeneration system can generate 40.65 MW net power, 6.02 MW cooling capacity, and the 9.93 MW heating loads, with 20.17% overall exergoeconomic factor after the optimization on exergoeconomic aspect. Component combustion chamber presents the highest exergy destruction rate, while the subsystem GTC has the largest total exergy destruction and the highest total capital cost, successively followed by sCO2 cycle, ORC, and ARC. Compared with system using n-butane case, the total product unit costs increase by 0.27%, 1.09%, and 0.20% for fluids i-butane, n-pentane, and i-pentane cases, respectively, and the exergy efficiencies elevate correspondingly. However, the thermal efficiencies of above three cases decrease by 0.48%, 0.71%, and 1.06%, respectively. Moreover, combustion chamber is always the most important component for cost in the proposed trigeneration system optimized on the thermodynamic and exergoeconomic aspects, as well as the absorber being foremost in the bottoming ARC.

中文翻译:

用于燃气轮机余热回收的超临界二氧化碳布雷顿循环、有机朗肯循环和吸收式制冷循环的新型三联产系统的经济分析

摘要 多联供系统以其有效提高能源利用效率、减缓环境污染、提高供电安全可靠等优势而受到越来越多的关注。在这项研究中,提出了一种由燃气轮机循环 (GTC)、蓄热式超临界二氧化碳 (sCO2) 布雷顿循环、有机朗肯循环 (ORC) 和吸收式制冷循环 (ARC) 组成的新型三联产系统。从 GTC 排出的废热首先被 sCO2 循环吸收,然后被 ORC 用来发电。底部 ARC 由剩余热量驱动以提供冷却能力,而热水由 GTC 中的中间冷却器提供。进行热力学和热力学分析以研究三联产系统的性能。进行对比研究以评估 ORC 与不同工作流体对整个系统性能的影响。此外,从热力学第一定律、第二定律和热力学角度对所提出系统的性能进行了优化和比较。结果表明,三联产系统经热效率优化后可产生40.65 MW的净功率、6.02 MW的冷量和9.93 MW的热负荷,综合热效率系数为20.17%。组件燃烧室的火用破坏率最高,而子系统 GTC 的总火用破坏最大,总投资成本最高,其次是 sCO2 循环、ORC 和 ARC。与使用正丁烷情况的系统相比,流体异丁烷、正戊烷和异戊烷情况的总产品单位成本分别增加0.27%、1.09%和0.20%,火用效率相应提高。但是,上述三种情况的热效率分别下降了 0.48%、0.71% 和 1.06%。此外,在所提议的三联产系统中,燃烧室始终是最重要的成本组成部分,该系统在热力学和火力经济方面进行了优化,并且吸收器是底部 ARC 中最重要的部分。分别为 71% 和 1.06%。此外,在所提议的三联产系统中,燃烧室始终是最重要的成本组件,该系统在热力学和发电经济方面进行了优化,并且吸收器在底部 ARC 中最重要。分别为 71% 和 1.06%。此外,在所提议的三联产系统中,燃烧室始终是最重要的成本组成部分,该系统在热力学和发电经济方面进行了优化,并且吸收器位于底部 ARC 中。
更新日期:2020-10-01
down
wechat
bug