当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous Zn1-xCdxS nanosheets/ZnO nanorod heterojunction photoanode via self-templated and cadmium ions exchanged conversion of ZnS(HDA)0.5 nanosheets/ZnO nanorod
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-07-05 , DOI: 10.1016/j.cej.2020.126153
Ruturaj P. Patil , Mahadeo A. Mahadik , Ho-Sub Bae , Weon-Sik Chae , Sun Hee Choi , Jum Suk Jang

Herein, we synthesized porous Zn1-xCdxS nanosheets (PNS)/ZnO nanorod (NR) heterojunction photoanode via self-templated conversion using successively hydrothermal and Cd2+ ion exchange methods. Moreover, after conversion of ZnO to inorganic–organic hybrid ZnS-1,6-hexanediamine (HDA)0.5nanosheets/ZnO NR material, Cd2+ ion exchange was conducted. It was confirmed from X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM) analyses that the inorganic–organic hybrid ZnS(HDA)0.5 NS was transformed into Zn1-xCdxS PNS/ZnO NR heterojunction photoanode via the replacement of Zn2+ by Cd2+ ion. Zn1-xCdxS PNS/ZnO NR-160C3H heterojunction photoanode synthesized at 160 °C for 3 h showed the highest photocurrent density of 4.10 mA cm−2 (vs. RHE) under 1.5 G illumination, which was 7.9 times higher than that of bare ZnO NR photoanode. The porous nanostructured morphology and larger surface area of Zn1-xCdxS PNS/ZnO NR heterojunction photoanode fabricated by Cd2+ ion exchange result in efficient light absorption and effective charge transfer pathway. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results show the shorter lifetime (37 ns) and reduced recombination in Zn1-xCdxS PNS/ZnO NR-160C3H heterojunction photoanode. During PEC analysis, the possible charge transfer mechanism in Zn1-xCdxS PNS/ZnO NR heterojunction photoanode was proposed. Surface passivated Zn1-xCdxS PNS/ZnO NR-160C3H photoanode shows improved photostability and exhibited 3.8 times higher H2 evolution (161 μmol) than the Zn1-xCdxS PNS/ZnO NR-160C3H (42 μmol) photoelectrode at 0.9 V vs. RHE.



中文翻译:

ZnS(HDA)0.5纳米片/ ZnO纳米棒的自模板和镉离子交换转化多孔Zn 1-x Cd x S纳米片/ ZnO纳米棒异质结光阳极

在这里,我们通过连续水热和Cd 2+离子交换方法通过自模板转换合成了多孔Zn 1-x Cd x S纳米片(PNS)/ ZnO纳米棒(NR)异质结光电阳极。此外,在将ZnO转化为无机-有机杂化ZnS-1,6-己二胺(HDA)0.5纳米片/ ZnO NR材料后,进行了Cd 2+离子交换。通过X射线光电子能谱(XPS)和透射电子显微镜(TEM)分析证实,无机-有机杂化ZnS(HDA)0.5 NS可以通过X-射线转换为Zn 1-x Cd x S PNS / ZnO NR异质结光阳极。镉替代锌2+2+离子。Zn 1-x Cd x S PNS / ZnO NR-160C3H异质结光电阳极在160°C下合成3 h在1.5 G光照下显示最高光电流密度为4.10 mA cm -2相对于RHE),是7.9倍裸露的ZnO NR光电阳极。通过Cd 2+离子交换制备的Zn 1-x Cd x S PNS / ZnO NR异质结光电阳极具有多孔的纳米结构形态和较大的表面积,可实现有效的光吸收和有效的电荷转移途径。Zn 1-x Cd的光致发光(PL)和时间分辨的光致发光(TRPL)结果显示寿命较短(37 ns)且复合减少x S PNS / ZnO NR-160C3H异质结光电阳极。在PEC分析中,提出了Zn 1-x Cd x S PNS / ZnO NR异质结光电阳极中可能的电荷转移机理。表面钝化的Zn 1-x Cd x S PNS / ZnO NR-160C3H光电阳极显示出更高的光稳定性,并且H 2析出(161μmol)比Zn 1-x Cd x S PNS / ZnO NR-160C3H(42μmol )高3.8倍相对于RHE为0.9 V的光电极。

更新日期:2020-07-10
down
wechat
bug