当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micromechanical analysis of longitudinal and shear strength of composite laminae
Journal of Composite Materials ( IF 2.9 ) Pub Date : 2020-07-02 , DOI: 10.1177/0021998320936343
Lucas L Vignoli 1, 2 , Marcelo A Savi 1 , Pedro MCL Pacheco 3 , Alexander L Kalamkarov 4
Affiliation  

The analysis of several micromechanical models for estimating strength of composite laminae is presented. Longitudinal tensile, compressive and in-plane onset shear strengths are analytically estimated and compared with experimental data available in the literature. The tensile longitudinal load predominantly induces rupture of fibers. On the other hand, the compressive strength is highly influenced by fiber misalignment, inducing a wide range of failure mechanisms. The material response to in-plane shear presents a strong nonlinear response. The estimation of longitudinal tensile strength based on the rule of mixture approaches is compared with 27 experimental data. A novel improvement is proposed assuming that in situ strength of fiber is smaller than fiber strength measured individually due to manufacturing induced damage. For the in-plane shear, 6 models are compared with 10 experimental stress-strain curves, including a novel closed-form expression based on the concentric cylinders model. Finally, for the longitudinal compressive strength, 8 micromechanical models, including a novel model to estimate misalignment effect in fiber crushing, are compared with 61 experimental data are analyzed. Results indicate that the minimal average error for the longitudinal tensile strength is 12.4% while for the compressive strength it is 15%. For the shear strength, the closest prediction depends on the strength definition and the proposed damage onset strength presents the best predictions. In general, the newly proposed models present the best estimations compared with the other models.

中文翻译:

复合材料层板纵剪强度的微观力学分析

介绍了用于估计复合薄板强度的几种微机械模型的分析。纵向拉伸、压缩和平面内起始剪切强度经过分析估计,并与文献中可用的实验数据进行比较。拉伸纵向载荷主要导致纤维断裂。另一方面,抗压强度受纤维错位的影响很大,会导致多种失效机制。材料对面内剪切的响应呈现出强烈的非线性响应。基于混合法规则的纵向抗拉强度估计与27个实验数据进行了比较。假设纤维的原位强度小于由于制造引起的损伤而单独测量的纤维强度,则提出了一种新颖的改进。对于面内剪切,将 6 个模型与 10 个实验应力应变曲线进行比较,包括基于同心圆柱模型的新型封闭形式表达式。最后,对于纵向抗压强度,分析了 8 个微观力学模型,包括一种用于估计纤维破碎中错位效应的新模型,并与 61 个实验数据进行了比较。结果表明,纵向抗拉强度的最小平均误差为 12.4%,而抗压强度的最小平均误差为 15%。对于剪切强度,最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。包括基于同心圆柱模型的新型封闭式表达式。最后,对于纵向抗压强度,分析了 8 个微观力学模型,包括一种用于估计纤维破碎中错位效应的新模型,并与 61 个实验数据进行了比较。结果表明,纵向抗拉强度的最小平均误差为 12.4%,而抗压强度的最小平均误差为 15%。对于剪切强度,最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。包括基于同心圆柱模型的新型封闭式表达式。最后,对于纵向抗压强度,分析了 8 个微观力学模型,包括一种用于估计纤维破碎中错位效应的新模型,并与 61 个实验数据进行了比较。结果表明,纵向抗拉强度的最小平均误差为 12.4%,而抗压强度的最小平均误差为 15%。对于剪切强度,最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。包括用于估计纤维破碎中错位效应的新模型,并与 61 个实验数据进行了比较分析。结果表明,纵向抗拉强度的最小平均误差为 12.4%,而抗压强度的最小平均误差为 15%。对于剪切强度,最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。包括用于估计纤维破碎中错位效应的新模型,并与 61 个实验数据进行了比较分析。结果表明,纵向抗拉强度的最小平均误差为 12.4%,而抗压强度的最小平均误差为 15%。对于剪切强度,最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。最接近的预测取决于强度定义,并且建议的损伤起始强度提供了最好的预测。一般来说,与其他模型相比,新提出的模型呈现出最好的估计。
更新日期:2020-07-02
down
wechat
bug