当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations.
Scientific Reports ( IF 4.6 ) Pub Date : 2020-07-03 , DOI: 10.1038/s41598-020-67364-0
Burhan Gulbahar 1
Affiliation  

The scalability, error correction and practical problem solving are important challenges for quantum computing (QC) as more emphasized by quantum supremacy (QS) experiments. Quantum path computing (QPC), recently introduced for linear optic based QCs as an unconventional design, targets to obtain scalability and practical problem solving. It samples the intensity from the interference of exponentially increasing number of propagation paths obtained in multi-plane diffraction (MPD) of classical particle sources. QPC exploits MPD based quantum temporal correlations of the paths and freely entangled projections at different time instants, for the first time, with the classical light source and intensity measurement while not requiring photon interactions or single photon sources and receivers. In this article, photonic QPC is defined, theoretically modeled and numerically analyzed for arbitrary Fourier optical or quadratic phase set-ups while utilizing both Gaussian and Hermite-Gaussian source laser modes. Problem solving capabilities already including partial sum of Riemann theta functions are extended. Important future applications, implementation challenges and open issues such as universal computation and quantum circuit implementations determining the scope of QC capabilities are discussed. The applications include QS experiments reaching more than \(2^{100}\) Feynman paths, quantum neuron implementations and solutions of nonlinear Schrödinger equation.



中文翻译:

傅里叶光学的量子路径计算理论和量子霸权、神经网络和非线性薛定谔方程的未来应用。

正如量子霸权 (QS) 实验所强调的那样,可扩展性、纠错和实际问题解决是量子计算 (QC) 面临的重要挑战。量子路径计算 (QPC) 是最近引入的基于线性光学的 QC,作为一种非常规设计,旨在获得可扩展性和解决实际问题。它从经典粒子源的多平面衍射 (MPD) 中获得的传播路径数量呈指数增长的干扰中采样强度。QPC 首次利用基于 MPD 的路径的量子时间相关性和不同时刻的自由纠缠投影,使用经典的光源和强度测量,同时不需要光子相互作用或单光子源和接收器。在本文中,定义了光子 QPC,对任意傅里叶光学或二次相位设置进行理论建模和数值分析,同时利用高斯和 Hermite-Gaussian 源激光模式。已经包括黎曼θ函数的部分和的问题解决能力得到扩展。讨论了重要的未来应用、实施挑战和开放性问题,例如确定 QC 能力范围的通用计算和量子电路实施。应用包括 QS 实验达到超过 讨论了实施挑战和开放性问题,例如确定 QC 能力范围的通用计算和量子电路实施。应用包括 QS 实验达到超过 讨论了实施挑战和开放性问题,例如确定 QC 能力范围的通用计算和量子电路实施。应用包括 QS 实验达到超过\(2^{100}\)费曼路径、量子神经元实现和非线性薛定谔方程的解。

更新日期:2020-07-03
down
wechat
bug