当前位置: X-MOL 学术Environ. MicroBiol. Rep › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of forced taxonomic transitions on metabolic composition and function in microbial microcosms.
Environmental Microbiology Reports ( IF 3.3 ) Pub Date : 2020-07-02 , DOI: 10.1111/1758-2229.12866
Stilianos Louca 1, 2 , Ilan N Rubin 3, 4 , Lufiani L Madilao 5, 6 , Jörg Bohlmann 5, 6, 7, 8 , Michael Doebeli 3, 4, 9 , Laura Wegener Parfrey 3, 4, 8
Affiliation  

Surveys of microbial systems indicate that in many situations taxonomy and function may constitute largely independent (‘decoupled’) axes of variation. However, this decoupling is rarely explicitly tested experimentally, partly because it is hard to directly induce taxonomic variation without affecting functional composition. Here we experimentally evaluate this paradigm using microcosms resembling lake sediments and subjected to two different levels of salinity (0 and 19) and otherwise similar environmental conditions. We used DNA sequencing for taxonomic and functional profiling of bacteria and archaea and physicochemical measurements to monitor metabolic function, over 13 months. We found that the taxonomic composition of the saline systems gradually but strongly diverged from the fresh systems. In contrast, the metabolic composition (in terms of proportions of various genes) remained nearly identical across treatments and over time. Oxygen consumption rates and methane concentrations were substantially lower in the saline treatment, however, their similarity either increased (for oxygen) or did not change significantly (for methane) between the first and last sampling time, indicating that the lower metabolic activity in the saline treatments was directly and immediately caused by salinity rather than the gradual taxonomic divergence. Our experiment demonstrates that strong taxonomic shifts need not directly affect metabolic rates.

中文翻译:

强制分类学过渡对微生物微观世界中代谢组成和功能的影响。

微生物系统的调查表明,在许多情况下,分类学和功能可能构成很大程度上独立的(“解耦”)变异轴。但是,这种去耦很少通过实验进行明确测试,部分原因是很难在不影响功能组成的情况下直接诱发分类学差异。在这里,我们使用类似于湖泊沉积物的微观世界,通过实验来评估这种范例,该微观世界经历了两种不同的盐度水平(0和19)以及其他类似的环境条件。在超过13个月的时间里,我们使用DNA测序对细菌和古细菌进行了分类和功能分析,并通过理化测量来监测代谢功能。我们发现盐水系统的分类学组成逐渐但与新鲜系统有很大差异。相反,在不同的治疗过程中,随着时间的推移,新陈代谢的组成(就各种基因的比例而言)几乎保持不变。在盐水处理中,耗氧率和甲烷浓度大大降低,但是,在第一个采样时间和最后一个采样时间之间,它们的相似性要么增加(对于氧气),要么没有显着变化(对于甲烷),这表明盐水中的代谢活性较低盐度而不是逐渐的分类差异直接或立即引起了处理。我们的实验表明,强大的分类学转变无需直接影响代谢率。它们的相似性在第一个和最后一个采样时间之间增加(对于氧气)或没有显着变化(对于甲烷),这表明盐水处理中较低的代谢活性直接和立即由盐度而不是逐渐的分类差异引起。我们的实验表明,强大的分类学转变无需直接影响代谢率。它们的相似性在第一个和最后一个采样时间之间增加(对于氧气)或没有显着变化(对于甲烷),这表明盐水处理中较低的代谢活性直接和立即由盐度而不是逐渐的分类差异引起。我们的实验表明,强大的分类学转变无需直接影响代谢率。
更新日期:2020-07-02
down
wechat
bug