当前位置: X-MOL 学术Org. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy and charge transfer dynamics at an organic donor/acceptor interface
Organic Electronics ( IF 3.2 ) Pub Date : 2020-07-03 , DOI: 10.1016/j.orgel.2020.105886
Lingxia Xu , Yiwen Ji , Xueyi Shi , Luxia Wang , Kun Gao

Competition between the energy and charge transfer dynamics plays a crucial role in different photoelectric applications of organic donor/acceptor (D/A) interfaces, while its microscopic quantum dynamics and the quantitative correlation with the interface structure remain unclear. Here, by theoretically constructing an organic D/A interface with the donor initially photo-excited, we give a full consideration to this issue. Firstly, we investigate the effect of the interface electronic structure on the dynamics, which is modulated by tuning the on-site energy of donor. The results show that there exists a critical value of the on-site energy, below which energy transfer is dominant, otherwise charge transfer is dominant. Especially, when the on-site energy reaches up to a certain strength, the transferred electron into acceptor will experience an ultrafast internal conversion process. Furthermore, by separately choosing three typical electronic structures, we demonstrate the effect of the interface spatial structure on the dynamics. It is found that there exists an optimal spatial structure in either the energy transfer dominant interface or the charge transfer dominant interface, making the transfer efficiency to be the highest. These findings provide a microscopic understanding of how to optimize the interface structure to modulate the energy and charge transfer dynamics in different applications of organic D/A interfaces.



中文翻译:

有机供体/受体界面的能量和电荷转移动力学

能量和电荷转移动力学之间的竞争在有机施主/受体(D / A)界面的不同光电应用中起着至关重要的作用,而其微观量子动力学以及与界面结构的定量关系仍然不清楚。在这里,通过理论上与最初受光激发的供体构建有机D / A界面,我们充分考虑了这个问题。首先,我们研究了界面电子结构对动力学的影响,该动力学是通过调节施主的现场能量来调节的。结果表明,存在现场能量的临界值,在该临界值以下能量转移占主导,否则电荷转移占主导。特别是当现场能量达到一定强度时,转移到受体中的电子将经历超快的内部转换过程。此外,通过分别选择三种典型的电子结构,我们演示了界面空间结构对动力学的影响。发现在能量转移支配界面或电荷转移支配界面中存在最优的空间结构,从而使转移效率最高。这些发现为如何在有机D / A界面的不同应用中优化界面结构以调节能量和电荷转移动力学提供了微观的理解。发现在能量转移支配界面或电荷转移支配界面中存在最优的空间结构,从而使转移效率最高。这些发现为如何在有机D / A界面的不同应用中优化界面结构以调节能量和电荷转移动力学提供了微观的理解。发现在能量转移支配界面或电荷转移支配界面中存在最优的空间结构,从而使转移效率最高。这些发现为如何在有机D / A界面的不同应用中优化界面结构以调节能量和电荷转移动力学提供了微观的理解。

更新日期:2020-07-05
down
wechat
bug