当前位置: X-MOL 学术Bull. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
$$\hbox {Bi}_{(1-y)}\hbox {Sm}_{{y}}\hbox {FeO}_{{3}}$$ as prospective photovoltaic materials
Bulletin of Materials Science ( IF 1.8 ) Pub Date : 2020-07-02 , DOI: 10.1007/s12034-020-02118-2
M A Matin , M M Rhaman , M A Hakim , M F Islam

The bandgap energy (Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{\mathrm {g}}$$\end{document}) of silicon-based photovoltaic (PV) cells is 1.1 eV, which limits its efficiency to 33.33%. Thus, the quest for alternative materials with maximum theoretical power conversion efficiencies (PCE) is growing in full swing within scientific community. Bismuth ferrite (BFO) is one of the promising candidates due to its tunable Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g}}$$\end{document}. For visible light with wavelength from 380 to 750 nm, Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g}}$$\end{document} falls within the range of 1.65–3.1 eV. The photons with wavelengths of higher than 464 nm (Eg=2.67\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g }}= 2.67$$\end{document} eV) constitute 80% of the solar spectrum, which cannot be absorbed by un-doped BFO. Thus, lowering the Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g}}$$\end{document} of BFO is a promising way to obtain higher PCE of PV cells to harvest a wide range of visible light spectrum. In this context, we have synthesized samarium (Sm)-doped Bi(1-y)SmyFeO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Bi}_{{(1-y)}}{\mathrm {Sm}}_{y} {\mathrm {FeO}}_{{3}}$$\end{document} (y=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y} = 0.05$$\end{document}, 0.1 and 0.15) multiferroic nanoparticles using sol–gel method. The evolution of phase from xerogel was thoroughly investigated by differential scanning calorimetry and a noticeable peak shift of 7∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7^{\circ }\hbox {C}$$\end{document} was observed due to Sm doping compared to un-doped counterpart. For crystallinity, xerogel powder was annealed at 600∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$600^{\circ }\hbox {C}$$\end{document}. Rietveld refinement of X-ray diffraction data have confirmed rhombohedral crystal structure (R3c) of annealed samples and a substantial reduction of crystal size from 57.4 to 16 nm. For the first time, a total suppression of secondary phase was obtained in Bi99.05Sm0.05FeO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Bi}_{{99.05}}{\mathrm {Sm}}_{{0.05}} {\mathrm {FeO}}_{{3}}$$\end{document} with only 5 (at.)% Sm addition. Fe–O–Fe bond angle was found to change significantly from 154.77 to 158.84∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$158.84^\circ $$\end{document} and Fe–O bond length was found to be decreased along long axis and increased along short axis in Sm-doped samples. Field emission scanning electron microscopy demonstrated a reduction in particle size from 164 to 88 nm with increasing Sm-dopant concentration. The bandgap energy of un-doped and Sm-doped BiFeO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {BiFeO}_{{3}}$$\end{document} was calculated from measured diffused reflectance data using UV–Vis–NIR spectroscopy, the result has shown a reduction of bandgap in Sm-doped BiFeO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {BiFeO}_{{3}}$$\end{document} to 1.9 eV.

中文翻译:

$$\hbox {Bi}_{(1-y)}\hbox {Sm}_{{y}}\hbox {FeO}_{{3}}$$ 作为潜在的光伏材料

带隙能量 (例如\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength {\oddsidemargin}{-69pt} \begin{document}$${E}_{\mathrm {g}}$$\end{document}) 的硅基光伏 (PV) 电池为 1.1 eV,这限制了其效率达到 33.33%。因此,科学界对具有最大理论功率转换效率 (PCE) 的替代材料的探索正在如火如荼地进行。铋铁氧体 (BFO) 是有前途的候选材料之一,因为它具有可调性 Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \ usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g}}$$\end{document}。对于波长为 380 到 750 nm 的可见光,例如\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g}}$$\end{document} 落在 1.65–3.1 的范围内EV。波长大于 464 nm 的光子(Eg=2. 67\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin} {-69pt} \begin{document}$${{E}}_{\mathrm {g }}= 2.67$$\end{document} eV) 占太阳光谱的 80%,不能被非吸收掺杂 BFO。因此,降低 Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength {\oddsidemargin}{-69pt} \begin{document}$${{E}}_{\mathrm {g}}$$\end{document} 的 BFO 是获得更高的 PV 电池 PCE 的有前途的方法来收获范围广泛的可见光光谱。在这种情况下,通过差示扫描量热法和 7∘C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7^{\circ }\hbox {C}$$\end{document} 是与未掺杂的对应物相比,由于 Sm 掺杂而观察到。对于结晶度,干凝胶粉末在 600∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$600^{\circ }\hbox {C}$$\end{document}。X 射线衍射数据的 Rietveld 精修证实了退火样品的菱形晶体结构 (R3c) 和晶体尺寸从 57.4 nm 显着减小到 16 nm。首次在 Bi99.05Sm0.05FeO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{ 中获得了二次相的完全抑制amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Bi}_{{99.05}}{\mathrm {Sm}}_{{ 0.05}} {\mathrm {FeO}}_{{3}}$$\end{document} 仅添加 5 (at.)% Sm。发现 Fe-O-Fe 键角从 154.77 到 158 发生显着变化。84∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin }{-69pt} \begin{document}$$158.84^\circ $$\end{document} 和 Fe-O 键长被发现在 Sm 掺杂样品中沿长轴减小并沿短轴增加。场发射扫描电子显微镜表明,随着 Sm 掺杂剂浓度的增加,颗粒尺寸从 164 nm 减小到 88 nm。
更新日期:2020-07-02
down
wechat
bug