当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Factoring Polynomials over Finite Fields with Linear Galois Groups: An Additive Combinatorics Approach
arXiv - CS - Computational Complexity Pub Date : 2020-07-01 , DOI: arxiv-2007.00512
Zeyu Guo

Let $\tilde{f}(X)\in\mathbb{Z}[X]$ be a degree-$n$ polynomial such that $f(X):=\tilde{f}(X)\bmod p$ factorizes into $n$ distinct linear factors over $\mathbb{F}_p$. We study the problem of deterministically factoring $f(X)$ over $\mathbb{F}_p$ given $\tilde{f}(X)$. Under the generalized Riemann hypothesis (GRH), we give an improved deterministic algorithm that computes the complete factorization of $f(X)$ in the case that the Galois group of $\tilde{f}(X)$ is (permutation isomorphic to) a linear group $G\leq \mathrm{GL}(V)$ on the set $S$ of roots of $\tilde{f}(X)$, where $V$ is a finite-dimensional vector space over a finite field $\mathbb{F}$ and $S$ is identified with a subset of $V$. In particular, when $|S|=|V|^{\Omega(1)}$, the algorithm runs in time polynomial in $n^{\log n/(\log\log\log\log n)^{1/3}}$ and the size of the input, improving Evdokimov's algorithm. Our result also applies to a general Galois group $G$ when combined with a recent algorithm of the author. To prove our main result, we introduce a family of objects called linear $m$-schemes and reduce the problem of factoring $f(X)$ to a combinatorial problem about these objects. We then apply techniques from additive combinatorics to obtain an improved bound. Our techniques may be of independent interest.

中文翻译:

线性伽罗瓦群有限域上的多项式因式分解:一种加法组合方法

令 $\tilde{f}(X)\in\mathbb{Z}[X]$ 是一个度数-$n$ 多项式,使得 $f(X):=\tilde{f}(X)\bmod p$在 $\mathbb{F}_p$ 上分解为 $n$ 个不同的线性因子。我们研究了给定 $\tilde{f}(X)$ 对 $\mathbb{F}_p$ 确定性分解 $f(X)$ 的问题。在广义黎曼假设 (GRH) 下,我们给出了一种改进的确定性算法,该算法在 $\tilde{f}(X)$ 的伽罗瓦群是(置换同构为) $\tilde{f}(X)$ 根的集合 $S$ 上的线性群 $G\leq \mathrm{GL}(V)$,其中 $V$ 是一个有限维向量空间有限域 $\mathbb{F}$ 和 $S$ 用 $V$ 的子集标识。特别地,当$|S|=|V|^{\Omega(1)}$时,算法在$n^{\log n/(\log\log\log\log n)^{的时间多项式中运行1/3}}$ 和输入的大小,改进 Evdokimov 算法。当结合作者的最新算法时,我们的结果也适用于一般伽罗瓦群 $G$。为了证明我们的主要结果,我们引入了一系列称为线性 $m$-schemes 的对象,并将分解 $f(X)$ 的问题简化为关于这些对象的组合问题。然后我们应用加法组合学的技术来获得改进的界限。我们的技术可能具有独立的利益。
更新日期:2020-08-05
down
wechat
bug