当前位置: X-MOL 学术Micro Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
(Li,F) co-doped ZnO: Optoelectronic devices applications
Micro and Nanostructures ( IF 3.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.spmi.2020.106645
M. Khuili , N. Fazouan , H. Abou El Makarim , E.H. Atmani , A. Abbassi , D.P. Rai

Abstract One of the challenging tasks of ZnO is to make its p-type doping stable. However, the physical mechanism behind the experimental phenomena of stable ZnO p-type has not been explored so far. Here, the first-principles calculations using the GPW and FP-LPAW methods within Density Functional Theory (DFT) were investigated to explore, on one side, the effect of different substitutional and interstitial sites of Li insertion, and on the other side, the effect of anion-cation co-doping (Li–F) at ratios of 1:1 and 2:1, respectively, on the structural stability as well as electronic, optical, and electrical properties of ZnO. The results showed that Li at the octahedral site (Lioct) acting as donor-type is more stable than Li at the Zn site (LiZn) acting as acceptor-type, explaining the difficulty to obtain a stable ZnO p-type conductivity. For equal proportion co-doping under O-rich condition, the formation energy of LiZn–F is lower than that of Lioct-F, indicating that the (LiZn–F) can suppress the effect of Li interstitial and form a completely passive complex. Furthermore, the formation energy of (2LiZn–F) co-doping was more reduced compared to that of (LiZn–F) co-doping with the formation of an occupied shallower acceptor level that improves holes electrical conductivity. Also, a significant absorption in the visible region was shown compared to pure ZnO. Therefore, we can conclude that the presence of the F atom could suppress the formation of interstitial, and (2Li,F) co-doping can be a promising stable p-type of ZnO for use in optoelectronic device applications.

中文翻译:

(Li,F) 共掺杂 ZnO:光电器件应用

摘要 ZnO 的挑战性任务之一是使其 p 型掺杂稳定。然而,到目前为止,尚未探索稳定 ZnO p 型实验现象背后的物理机制。在这里,研究了在密度泛函理论 (DFT) 中使用 GPW 和 FP-LPAW 方法的第一性原理计算,以探索锂插入的不同取代位点和间隙位点的影响,另一方面,阴离子-阳离子共掺杂 (Li-F) 的比例分别为 1:1 和 2:1,对 ZnO 的结构稳定性以及电子、光学和电学性能的影响。结果表明,在八面体部位(Lioct)作为供体类型的锂比在锌部位(LiZn)作为受体类型的锂更稳定,解释了难以获得稳定的 ZnO p 型导电性。在富氧条件下等比例共掺杂,LiZn-F的形成能低于Lioct-F,表明(LiZn-F)可以抑制Li间隙的作用并形成完全钝化的配合物。此外,与 (LiZn-F) 共掺杂相比,(2LiZn-F) 共掺杂的形成能降低更多,形成占据的较浅受主能级,提高了空穴的导电性。此外,与纯 ZnO 相比,在可见光区域显示出显着的吸收。因此,我们可以得出结论,F 原子的存在可以抑制间隙的形成,并且 (2Li,F) 共掺杂可能是一种有前途的稳定 p 型 ZnO,可用于光电器件应用。表明(LiZn-F)可以抑制锂间隙的作用并形成完全钝化的复合物。此外,与 (LiZn-F) 共掺杂相比,(2LiZn-F) 共掺杂的形成能降低更多,形成占据的较浅受主能级,提高了空穴的导电性。此外,与纯 ZnO 相比,在可见光区域显示出显着的吸收。因此,我们可以得出结论,F 原子的存在可以抑制间隙的形成,并且 (2Li,F) 共掺杂可能是一种有前途的稳定 p 型 ZnO,可用于光电器件应用。表明(LiZn-F)可以抑制锂间隙的作用并形成完全钝化的复合物。此外,与 (LiZn-F) 共掺杂相比,(2LiZn-F) 共掺杂的形成能降低更多,形成占据的较浅受主能级,提高了空穴电导率。此外,与纯 ZnO 相比,在可见光区域显示出显着的吸收。因此,我们可以得出结论,F 原子的存在可以抑制间隙的形成,并且 (2Li,F) 共掺杂可能是一种有前途的稳定 p 型 ZnO,可用于光电器件应用。与 (LiZn-F) 共掺杂相比,(2LiZn-F) 共掺杂的形成能降低更多,形成占据的较浅受主能级,提高了空穴的电导率。此外,与纯 ZnO 相比,在可见光区域显示出显着的吸收。因此,我们可以得出结论,F 原子的存在可以抑制间隙的形成,并且 (2Li,F) 共掺杂可能是一种有前途的稳定 p 型 ZnO,可用于光电器件应用。与 (LiZn-F) 共掺杂相比,(2LiZn-F) 共掺杂的形成能降低更多,形成占据的较浅受主能级,提高了空穴的电导率。此外,与纯 ZnO 相比,在可见光区域显示出显着的吸收。因此,我们可以得出结论,F 原子的存在可以抑制间隙的形成,并且 (2Li,F) 共掺杂可能是一种有前途的稳定 p 型 ZnO,可用于光电器件应用。
更新日期:2020-09-01
down
wechat
bug